#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
namespace HeuristicLab.Problems.DataAnalysis {
public class OnlineAccuracyCalculator : DeepCloneable, IOnlineCalculator {
private int correctlyClassified;
private int n;
public double Accuracy {
get {
return correctlyClassified / (double)n;
}
}
public OnlineAccuracyCalculator() {
Reset();
}
protected OnlineAccuracyCalculator(OnlineAccuracyCalculator original, Cloner cloner)
: base(original, cloner) {
correctlyClassified = original.correctlyClassified;
n = original.n;
errorState = original.errorState;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new OnlineAccuracyCalculator(this, cloner);
}
#region IOnlineCalculator Members
private OnlineCalculatorError errorState;
public OnlineCalculatorError ErrorState {
get { return errorState; }
}
public double Value {
get { return Accuracy; }
}
public void Reset() {
n = 0;
correctlyClassified = 0;
errorState = OnlineCalculatorError.InsufficientElementsAdded;
}
public void Add(double original, double estimated) {
// ignore cases where original is NaN completly
if (!double.IsNaN(original)) {
// increment number of observed samples
n++;
if (original.IsAlmost(estimated)) {
// original = estimated = +Inf counts as correctly classified
// original = estimated = -Inf counts as correctly classified
correctlyClassified++;
}
errorState = OnlineCalculatorError.None; // number of (non-NaN) samples >= 1
}
}
#endregion
public static double Calculate(IEnumerable originalValues, IEnumerable estimatedValues, out OnlineCalculatorError errorState) {
IEnumerator originalEnumerator = originalValues.GetEnumerator();
IEnumerator estimatedEnumerator = estimatedValues.GetEnumerator();
OnlineAccuracyCalculator accuracyCalculator = new OnlineAccuracyCalculator();
// always move forward both enumerators (do not use short-circuit evaluation!)
while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
double original = originalEnumerator.Current;
double estimated = estimatedEnumerator.Current;
accuracyCalculator.Add(original, estimated);
if (accuracyCalculator.ErrorState != OnlineCalculatorError.None) break;
}
// check if both enumerators are at the end to make sure both enumerations have the same length
if (accuracyCalculator.ErrorState == OnlineCalculatorError.None &&
(estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) {
throw new ArgumentException("Number of elements in originalValues and estimatedValues enumerations doesn't match.");
} else {
errorState = accuracyCalculator.ErrorState;
return accuracyCalculator.Accuracy;
}
}
}
}