#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; namespace HeuristicLab.Problems.DataAnalysis { public class ClassificationPerformanceMeasuresCalculator : DeepCloneable { public ClassificationPerformanceMeasuresCalculator(string positiveClassName, double positiveClassValue) { this.positiveClassName = positiveClassName; this.positiveClassValue = positiveClassValue; Reset(); } protected ClassificationPerformanceMeasuresCalculator(ClassificationPerformanceMeasuresCalculator original, Cloner cloner) : base(original, cloner) { positiveClassName = original.positiveClassName; positiveClassValue = original.positiveClassValue; truePositiveCount = original.truePositiveCount; falsePositiveCount = original.falsePositiveCount; trueNegativeCount = original.trueNegativeCount; falseNegativeCount = original.falseNegativeCount; errorState = original.errorState; } public override IDeepCloneable Clone(Cloner cloner) { return new ClassificationPerformanceMeasuresCalculator(this, cloner); } #region Properties private int truePositiveCount, falsePositiveCount, trueNegativeCount, falseNegativeCount; private readonly string positiveClassName; public string PositiveClassName { get { return positiveClassName; } } private readonly double positiveClassValue; public double PositiveClassValue { get { return positiveClassValue; } } public double TruePositiveRate { get { double divisor = truePositiveCount + falseNegativeCount; return divisor.IsAlmost(0) ? double.NaN : truePositiveCount / divisor; } } public double TrueNegativeRate { get { double divisor = falsePositiveCount + trueNegativeCount; return divisor.IsAlmost(0) ? double.NaN : trueNegativeCount / divisor; } } public double PositivePredictiveValue { get { double divisor = truePositiveCount + falsePositiveCount; return divisor.IsAlmost(0) ? double.NaN : truePositiveCount / divisor; } } public double NegativePredictiveValue { get { double divisor = trueNegativeCount + falseNegativeCount; return divisor.IsAlmost(0) ? double.NaN : trueNegativeCount / divisor; } } public double FalsePositiveRate { get { double divisor = falsePositiveCount + trueNegativeCount; return divisor.IsAlmost(0) ? double.NaN : falsePositiveCount / divisor; } } public double FalseDiscoveryRate { get { double divisor = falsePositiveCount + truePositiveCount; return divisor.IsAlmost(0) ? double.NaN : falsePositiveCount / divisor; } } private OnlineCalculatorError errorState; public OnlineCalculatorError ErrorState { get { return errorState; } } #endregion public void Reset() { truePositiveCount = 0; falseNegativeCount = 0; trueNegativeCount = 0; falseNegativeCount = 0; errorState = OnlineCalculatorError.InsufficientElementsAdded; } public void Add(double originalClassValue, double estimatedClassValue) { // ignore cases where original is NaN completely if (double.IsNaN(originalClassValue)) return; if (originalClassValue.IsAlmost(positiveClassValue) || estimatedClassValue.IsAlmost(positiveClassValue)) { //positive class/positive class estimation if (estimatedClassValue.IsAlmost(originalClassValue)) { truePositiveCount++; } else { if (estimatedClassValue.IsAlmost(positiveClassValue)) //misclassification of the negative class falsePositiveCount++; else //misclassification of the positive class falseNegativeCount++; } } else { //negative class/negative class estimation //In a multiclass classification all misclassifications of the negative class //will be treated as true negatives except on positive class estimations trueNegativeCount++; } errorState = OnlineCalculatorError.None; // number of (non-NaN) samples >= 1 } public void Calculate(IEnumerable originalClassValues, IEnumerable estimatedClassValues) { IEnumerator originalEnumerator = originalClassValues.GetEnumerator(); IEnumerator estimatedEnumerator = estimatedClassValues.GetEnumerator(); // always move forward both enumerators (do not use short-circuit evaluation!) while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { double original = originalEnumerator.Current; double estimated = estimatedEnumerator.Current; Add(original, estimated); if (ErrorState != OnlineCalculatorError.None) break; } // check if both enumerators are at the end to make sure both enumerations have the same length if (ErrorState == OnlineCalculatorError.None && (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) { throw new ArgumentException("Number of elements in originalValues and estimatedValues enumerations doesn't match."); } errorState = ErrorState; } } }