#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Problems.DataAnalysis { [StorableClass] [Item("RegressionSolution Impacts Calculator", "Calculation of the impacts of input variables for any regression solution")] public sealed class RegressionSolutionVariableImpactsCalculator : ParameterizedNamedItem { public enum ReplacementMethodEnum { Median, Average, Shuffle, Noise } public enum FactorReplacementMethodEnum { Best, Mode, Shuffle } public enum DataPartitionEnum { Training, Test, All } private const string ReplacementParameterName = "Replacement Method"; private const string DataPartitionParameterName = "DataPartition"; public IFixedValueParameter> ReplacementParameter { get { return (IFixedValueParameter>)Parameters[ReplacementParameterName]; } } public IFixedValueParameter> DataPartitionParameter { get { return (IFixedValueParameter>)Parameters[DataPartitionParameterName]; } } public ReplacementMethodEnum ReplacementMethod { get { return ReplacementParameter.Value.Value; } set { ReplacementParameter.Value.Value = value; } } public DataPartitionEnum DataPartition { get { return DataPartitionParameter.Value.Value; } set { DataPartitionParameter.Value.Value = value; } } [StorableConstructor] private RegressionSolutionVariableImpactsCalculator(bool deserializing) : base(deserializing) { } private RegressionSolutionVariableImpactsCalculator(RegressionSolutionVariableImpactsCalculator original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new RegressionSolutionVariableImpactsCalculator(this, cloner); } public RegressionSolutionVariableImpactsCalculator() : base() { Parameters.Add(new FixedValueParameter>(ReplacementParameterName, "The replacement method for variables during impact calculation.", new EnumValue(ReplacementMethodEnum.Median))); Parameters.Add(new FixedValueParameter>(DataPartitionParameterName, "The data partition on which the impacts are calculated.", new EnumValue(DataPartitionEnum.Training))); } //mkommend: annoying name clash with static method, open to better naming suggestions public IEnumerable> Calculate(IRegressionSolution solution) { return CalculateImpacts(solution, DataPartition, ReplacementMethod); } public static IEnumerable> CalculateImpacts( IRegressionSolution solution, DataPartitionEnum data = DataPartitionEnum.Training, ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Median, FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best) { var problemData = solution.ProblemData; var dataset = problemData.Dataset; IEnumerable rows; IEnumerable targetValues; double originalR2 = -1; OnlineCalculatorError error; switch (data) { case DataPartitionEnum.All: rows = solution.ProblemData.AllIndices; targetValues = problemData.TargetVariableValues.ToList(); originalR2 = OnlinePearsonsRCalculator.Calculate(problemData.TargetVariableValues, solution.EstimatedValues, out error); if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during R² calculation."); originalR2 = originalR2 * originalR2; break; case DataPartitionEnum.Training: rows = problemData.TrainingIndices; targetValues = problemData.TargetVariableTrainingValues.ToList(); originalR2 = solution.TrainingRSquared; break; case DataPartitionEnum.Test: rows = problemData.TestIndices; targetValues = problemData.TargetVariableTestValues.ToList(); originalR2 = solution.TestRSquared; break; default: throw new ArgumentException(string.Format("DataPartition {0} cannot be handled.", data)); } var impacts = new Dictionary(); var modifiableDataset = ((Dataset)dataset).ToModifiable(); var inputvariables = new HashSet(problemData.AllowedInputVariables.Union(solution.Model.VariablesUsedForPrediction)); var allowedInputVariables = dataset.VariableNames.Where(v => inputvariables.Contains(v)).ToList(); // calculate impacts for double variables foreach (var inputVariable in allowedInputVariables.Where(problemData.Dataset.VariableHasType)) { var newEstimates = EvaluateModelWithReplacedVariable(solution.Model, inputVariable, modifiableDataset, rows, replacementMethod); var newR2 = OnlinePearsonsRCalculator.Calculate(targetValues, newEstimates, out error); if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during R² calculation with replaced inputs."); newR2 = newR2 * newR2; var impact = originalR2 - newR2; impacts[inputVariable] = impact; } // calculate impacts for string variables foreach (var inputVariable in allowedInputVariables.Where(problemData.Dataset.VariableHasType)) { if (factorReplacementMethod == FactorReplacementMethodEnum.Best) { // try replacing with all possible values and find the best replacement value var smallestImpact = double.PositiveInfinity; foreach (var repl in problemData.Dataset.GetStringValues(inputVariable, rows).Distinct()) { var newEstimates = EvaluateModelWithReplacedVariable(solution.Model, inputVariable, modifiableDataset, rows, Enumerable.Repeat(repl, dataset.Rows)); var newR2 = OnlinePearsonsRCalculator.Calculate(targetValues, newEstimates, out error); if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during R² calculation with replaced inputs."); newR2 = newR2 * newR2; var impact = originalR2 - newR2; if (impact < smallestImpact) smallestImpact = impact; } impacts[inputVariable] = smallestImpact; } else { // for replacement methods shuffle and mode // calculate impacts for factor variables var newEstimates = EvaluateModelWithReplacedVariable(solution.Model, inputVariable, modifiableDataset, rows, factorReplacementMethod); var newR2 = OnlinePearsonsRCalculator.Calculate(targetValues, newEstimates, out error); if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during R² calculation with replaced inputs."); newR2 = newR2 * newR2; var impact = originalR2 - newR2; impacts[inputVariable] = impact; } } // foreach return impacts.OrderByDescending(i => i.Value).Select(i => Tuple.Create(i.Key, i.Value)); } private static IEnumerable EvaluateModelWithReplacedVariable(IRegressionModel model, string variable, ModifiableDataset dataset, IEnumerable rows, ReplacementMethodEnum replacement = ReplacementMethodEnum.Median) { var originalValues = dataset.GetReadOnlyDoubleValues(variable).ToList(); double replacementValue; List replacementValues; IRandom rand; switch (replacement) { case ReplacementMethodEnum.Median: replacementValue = rows.Select(r => originalValues[r]).Median(); replacementValues = Enumerable.Repeat(replacementValue, dataset.Rows).ToList(); break; case ReplacementMethodEnum.Average: replacementValue = rows.Select(r => originalValues[r]).Average(); replacementValues = Enumerable.Repeat(replacementValue, dataset.Rows).ToList(); break; case ReplacementMethodEnum.Shuffle: // new var has same empirical distribution but the relation to y is broken rand = new FastRandom(31415); // prepare a complete column for the dataset replacementValues = Enumerable.Repeat(double.NaN, dataset.Rows).ToList(); // shuffle only the selected rows var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(rand).ToList(); int i = 0; // update column values foreach (var r in rows) { replacementValues[r] = shuffledValues[i++]; } break; case ReplacementMethodEnum.Noise: var avg = rows.Select(r => originalValues[r]).Average(); var stdDev = rows.Select(r => originalValues[r]).StandardDeviation(); rand = new FastRandom(31415); // prepare a complete column for the dataset replacementValues = Enumerable.Repeat(double.NaN, dataset.Rows).ToList(); // update column values foreach (var r in rows) { replacementValues[r] = NormalDistributedRandom.NextDouble(rand, avg, stdDev); } break; default: throw new ArgumentException(string.Format("ReplacementMethod {0} cannot be handled.", replacement)); } return EvaluateModelWithReplacedVariable(model, variable, dataset, rows, replacementValues); } private static IEnumerable EvaluateModelWithReplacedVariable( IRegressionModel model, string variable, ModifiableDataset dataset, IEnumerable rows, FactorReplacementMethodEnum replacement = FactorReplacementMethodEnum.Shuffle) { var originalValues = dataset.GetReadOnlyStringValues(variable).ToList(); List replacementValues; IRandom rand; switch (replacement) { case FactorReplacementMethodEnum.Mode: var mostCommonValue = rows.Select(r => originalValues[r]) .GroupBy(v => v) .OrderByDescending(g => g.Count()) .First().Key; replacementValues = Enumerable.Repeat(mostCommonValue, dataset.Rows).ToList(); break; case FactorReplacementMethodEnum.Shuffle: // new var has same empirical distribution but the relation to y is broken rand = new FastRandom(31415); // prepare a complete column for the dataset replacementValues = Enumerable.Repeat(string.Empty, dataset.Rows).ToList(); // shuffle only the selected rows var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(rand).ToList(); int i = 0; // update column values foreach (var r in rows) { replacementValues[r] = shuffledValues[i++]; } break; default: throw new ArgumentException(string.Format("FactorReplacementMethod {0} cannot be handled.", replacement)); } return EvaluateModelWithReplacedVariable(model, variable, dataset, rows, replacementValues); } private static IEnumerable EvaluateModelWithReplacedVariable(IRegressionModel model, string variable, ModifiableDataset dataset, IEnumerable rows, IEnumerable replacementValues) { var originalValues = dataset.GetReadOnlyDoubleValues(variable).ToList(); dataset.ReplaceVariable(variable, replacementValues.ToList()); //mkommend: ToList is used on purpose to avoid lazy evaluation that could result in wrong estimates due to variable replacements var estimates = model.GetEstimatedValues(dataset, rows).ToList(); dataset.ReplaceVariable(variable, originalValues); return estimates; } private static IEnumerable EvaluateModelWithReplacedVariable(IRegressionModel model, string variable, ModifiableDataset dataset, IEnumerable rows, IEnumerable replacementValues) { var originalValues = dataset.GetReadOnlyStringValues(variable).ToList(); dataset.ReplaceVariable(variable, replacementValues.ToList()); //mkommend: ToList is used on purpose to avoid lazy evaluation that could result in wrong estimates due to variable replacements var estimates = model.GetEstimatedValues(dataset, rows).ToList(); dataset.ReplaceVariable(variable, originalValues); return estimates; } } }