#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HEAL.Attic;
using HeuristicLab.Common;
namespace HeuristicLab.Problems.DataAnalysis {
[StorableType("849e42d3-8934-419d-9aff-64ad81c06b67")]
public class Interval : IEquatable {
[Storable]
public double LowerBound { get; private set; }
[Storable]
public double UpperBound { get; private set; }
[StorableConstructor]
protected Interval(StorableConstructorFlag _) { }
///
/// Creates an interval with given bounds, where lower bound must be smaller than
/// the upper bound. Floating point precision errors trough calculations are fixed by,
/// checking if the intervals are almost the same (E-12). If this is the case, the bounds
/// will be set to the bound closer to zero.
///
/// Lower bound of the interval
/// Upper bound of the interval
public Interval(double lowerBound, double upperBound) {
if (lowerBound.IsAlmost(upperBound)) {
//If the bounds go over zero
if (lowerBound <= 0 && upperBound >= 0) {
lowerBound = 0.0;
upperBound = 0.0;
//Interval is negative
} else if (upperBound < 0) {
lowerBound = upperBound;
//Interval is positive
} else {
upperBound = lowerBound;
}
}
if (lowerBound > upperBound)
throw new ArgumentException("lowerBound must be smaller than or equal to upperBound.");
this.LowerBound = lowerBound;
this.UpperBound = upperBound;
}
public bool Contains(double value) {
return LowerBound <= value && value <= UpperBound;
}
public bool Contains(Interval other) {
if (double.IsNegativeInfinity(LowerBound) && double.IsPositiveInfinity(UpperBound)) return true;
if (other.LowerBound >= LowerBound && other.UpperBound <= UpperBound) return true;
return false;
}
public override string ToString() {
return "Interval: [" + LowerBound + ", " + UpperBound + "]";
}
public bool IsInfiniteOrUndefined {
get {
return double.IsInfinity(LowerBound) || double.IsInfinity(UpperBound) ||
double.IsNaN(LowerBound) || double.IsNaN(UpperBound);
}
}
///
/// True if the interval is positive without zero
///
public bool IsPositive {
get => LowerBound > 0.0;
}
///
/// True if the interval is negative without zero
///
public bool IsNegative {
get => UpperBound < 0.0;
}
public static Interval GetInterval(IEnumerable values) {
if (values == null) throw new ArgumentNullException("values");
if (!values.Any()) throw new ArgumentException($"No values are present.");
var min = double.MaxValue;
var max = double.MinValue;
foreach (var value in values) {
//If an value is NaN return an interval [NaN, NaN]
if (double.IsNaN(value)) return new Interval(double.NaN, double.NaN);
if (value < min) min = value;
if (value > max) max = value;
}
return new Interval(min, max);
}
#region Equals, GetHashCode, == , !=
public bool Equals(Interval other) {
if (other == null)
return false;
return (UpperBound.IsAlmost(other.UpperBound) || (double.IsNaN(UpperBound) && double.IsNaN(other.UpperBound)))
&& (LowerBound.IsAlmost(other.LowerBound) || (double.IsNaN(LowerBound) && double.IsNaN(other.LowerBound)));
}
public override bool Equals(object obj) {
return Equals(obj as Interval);
}
public override int GetHashCode() {
return LowerBound.GetHashCode() ^ UpperBound.GetHashCode();
}
public static bool operator ==(Interval interval1, Interval interval2) {
if (ReferenceEquals(interval1, null)) return ReferenceEquals(interval2, null);
return interval1.Equals(interval2);
}
public static bool operator !=(Interval interval1, Interval interval2) {
return !(interval1 == interval2);
}
#endregion
#region operations
// [x1,x2] + [y1,y2] = [x1 + y1,x2 + y2]
public static Interval Add(Interval a, Interval b) {
return new Interval(a.LowerBound + b.LowerBound, a.UpperBound + b.UpperBound);
}
// [x1,x2] − [y1,y2] = [x1 − y2,x2 − y1]
public static Interval Subtract(Interval a, Interval b) {
return new Interval(a.LowerBound - b.UpperBound, a.UpperBound - b.LowerBound);
}
// [x1,x2] * [y1,y2] = [min(x1*y1,x1*y2,x2*y1,x2*y2),max(x1*y1,x1*y2,x2*y1,x2*y2)]
public static Interval Multiply(Interval a, Interval b) {
double v1 = a.LowerBound * b.LowerBound;
double v2 = a.LowerBound * b.UpperBound;
double v3 = a.UpperBound * b.LowerBound;
double v4 = a.UpperBound * b.UpperBound;
double min = Math.Min(Math.Min(v1, v2), Math.Min(v3, v4));
double max = Math.Max(Math.Max(v1, v2), Math.Max(v3, v4));
return new Interval(min, max);
}
//Division by intervals containing 0 is implemented as defined in
//http://en.wikipedia.org/wiki/Interval_arithmetic
public static Interval Divide(Interval a, Interval b) {
if (b.Contains(0.0)) {
if (b.LowerBound.IsAlmost(0.0)) return Interval.Multiply(a, new Interval(1.0 / b.UpperBound, double.PositiveInfinity));
else if (b.UpperBound.IsAlmost(0.0)) return Interval.Multiply(a, new Interval(double.NegativeInfinity, 1.0 / b.LowerBound));
else return new Interval(double.NegativeInfinity, double.PositiveInfinity);
}
return Interval.Multiply(a, new Interval(1.0 / b.UpperBound, 1.0 / b.LowerBound));
}
public static Interval Sine(Interval a) {
if (Math.Abs(a.UpperBound - a.LowerBound) >= Math.PI * 2) return new Interval(-1, 1);
//divide the interval by PI/2 so that the optima lie at x element of N (0,1,2,3,4,...)
double Pihalf = Math.PI / 2;
Interval scaled = Interval.Divide(a, new Interval(Pihalf, Pihalf));
//move to positive scale
if (scaled.LowerBound < 0) {
int periodsToMove = Math.Abs((int)scaled.LowerBound / 4) + 1;
scaled = Interval.Add(scaled, new Interval(periodsToMove * 4, periodsToMove * 4));
}
double scaledLowerBound = scaled.LowerBound % 4.0;
double scaledUpperBound = scaled.UpperBound % 4.0;
if (scaledUpperBound < scaledLowerBound) scaledUpperBound += 4.0;
List sinValues = new List();
sinValues.Add(Math.Sin(scaledLowerBound * Pihalf));
sinValues.Add(Math.Sin(scaledUpperBound * Pihalf));
int startValue = (int)Math.Ceiling(scaledLowerBound);
while (startValue < scaledUpperBound) {
sinValues.Add(Math.Sin(startValue * Pihalf));
startValue += 1;
}
return new Interval(sinValues.Min(), sinValues.Max());
}
public static Interval Cosine(Interval a) {
return Interval.Sine(Interval.Add(a, new Interval(Math.PI / 2, Math.PI / 2)));
}
public static Interval Tangens(Interval a) {
return Interval.Divide(Interval.Sine(a), Interval.Cosine(a));
}
public static Interval HyperbolicTangent(Interval a) {
return new Interval(Math.Tanh(a.LowerBound), Math.Tanh(a.UpperBound));
}
public static Interval Logarithm(Interval a) {
return new Interval(Math.Log(a.LowerBound), Math.Log(a.UpperBound));
}
public static Interval Exponential(Interval a) {
return new Interval(Math.Exp(a.LowerBound), Math.Exp(a.UpperBound));
}
public static Interval Square(Interval a) {
if (a.UpperBound <= 0) return new Interval(a.UpperBound * a.UpperBound, a.LowerBound * a.LowerBound); // interval is negative
else if (a.LowerBound >= 0) return new Interval(a.LowerBound * a.LowerBound, a.UpperBound * a.UpperBound); // interval is positive
else return new Interval(0, Math.Max(a.LowerBound * a.LowerBound, a.UpperBound * a.UpperBound)); // interval goes over zero
}
public static Interval Cube(Interval a) {
return new Interval(Math.Pow(a.LowerBound, 3), Math.Pow(a.UpperBound, 3));
}
///
/// The interval contains both possible results of the calculated square root +-sqrt(x). That results in a wider
/// interval, but it contains all possible solutions.
///
/// Interval to build square root from.
///
public static Interval SquareRoot(Interval a) {
if (a.LowerBound < 0) return new Interval(double.NaN, double.NaN);
return new Interval(-Math.Sqrt(a.UpperBound), Math.Sqrt(a.UpperBound));
}
public static Interval CubicRoot(Interval a) {
var lower = (a.LowerBound < 0) ? -Math.Pow(-a.LowerBound, 1d / 3d) : Math.Pow(a.LowerBound, 1d / 3d);
var upper = (a.UpperBound < 0) ? -Math.Pow(-a.UpperBound, 1d / 3d) : Math.Pow(a.UpperBound, 1d / 3d);
return new Interval(lower, upper);
}
public static Interval Absolute(Interval a) {
var absLower = Math.Abs(a.LowerBound);
var absUpper = Math.Abs(a.UpperBound);
var min = Math.Min(absLower, absUpper);
var max = Math.Max(absLower, absUpper);
if (a.Contains(0.0)) {
min = 0.0;
}
return new Interval(min, max);
}
public static Interval AnalyticalQuotient(Interval a, Interval b) {
var dividend = a;
var divisor = Add(Square(b), new Interval(1.0, 1.0));
divisor = SquareRoot(divisor);
var quotient = Divide(dividend, divisor);
return quotient;
}
#endregion
}
}