#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis {
[StorableClass]
[Item("ClassificationProblemData", "Represents an item containing all data defining a classification problem.")]
public class ClassificationProblemData : DataAnalysisProblemData, IClassificationProblemData, IStorableContent {
protected const string TargetVariableParameterName = "TargetVariable";
protected const string ClassNamesParameterName = "ClassNames";
protected const string ClassificationPenaltiesParameterName = "ClassificationPenalties";
protected const string PositiveClassParameterName = "PositiveClass";
protected const int MaximumNumberOfClasses = 100;
protected const int InspectedRowsToDetermineTargets = 2000;
public string Filename { get; set; }
#region default data
private static string[] defaultVariableNames = new string[] { "sample", "clump thickness", "cell size", "cell shape", "marginal adhesion", "epithelial cell size", "bare nuclei", "chromatin", "nucleoli", "mitoses", "class" };
private static double[,] defaultData = new double[,]{
{1000025,5,1,1,1,2,1,3,1,1,2 },
{1002945,5,4,4,5,7,10,3,2,1,2 },
{1015425,3,1,1,1,2,2,3,1,1,2 },
{1016277,6,8,8,1,3,4,3,7,1,2 },
{1017023,4,1,1,3,2,1,3,1,1,2 },
{1017122,8,10,10,8,7,10,9,7,1,4 },
{1018099,1,1,1,1,2,10,3,1,1,2 },
{1018561,2,1,2,1,2,1,3,1,1,2 },
{1033078,2,1,1,1,2,1,1,1,5,2 },
{1033078,4,2,1,1,2,1,2,1,1,2 },
{1035283,1,1,1,1,1,1,3,1,1,2 },
{1036172,2,1,1,1,2,1,2,1,1,2 },
{1041801,5,3,3,3,2,3,4,4,1,4 },
{1043999,1,1,1,1,2,3,3,1,1,2 },
{1044572,8,7,5,10,7,9,5,5,4,4 },
{1047630,7,4,6,4,6,1,4,3,1,4 },
{1048672,4,1,1,1,2,1,2,1,1,2 },
{1049815,4,1,1,1,2,1,3,1,1,2 },
{1050670,10,7,7,6,4,10,4,1,2,4 },
{1050718,6,1,1,1,2,1,3,1,1,2 },
{1054590,7,3,2,10,5,10,5,4,4,4 },
{1054593,10,5,5,3,6,7,7,10,1,4 },
{1056784,3,1,1,1,2,1,2,1,1,2 },
{1057013,8,4,5,1,2,2,7,3,1,4 },
{1059552,1,1,1,1,2,1,3,1,1,2 },
{1065726,5,2,3,4,2,7,3,6,1,4 },
{1066373,3,2,1,1,1,1,2,1,1,2 },
{1066979,5,1,1,1,2,1,2,1,1,2 },
{1067444,2,1,1,1,2,1,2,1,1,2 },
{1070935,1,1,3,1,2,1,1,1,1,2 },
{1070935,3,1,1,1,1,1,2,1,1,2 },
{1071760,2,1,1,1,2,1,3,1,1,2 },
{1072179,10,7,7,3,8,5,7,4,3,4 },
{1074610,2,1,1,2,2,1,3,1,1,2 },
{1075123,3,1,2,1,2,1,2,1,1,2 },
{1079304,2,1,1,1,2,1,2,1,1,2 },
{1080185,10,10,10,8,6,1,8,9,1,4 },
{1081791,6,2,1,1,1,1,7,1,1,2 },
{1084584,5,4,4,9,2,10,5,6,1,4 },
{1091262,2,5,3,3,6,7,7,5,1,4 },
{1096800,6,6,6,9,6,4,7,8,1,2 },
{1099510,10,4,3,1,3,3,6,5,2,4 },
{1100524,6,10,10,2,8,10,7,3,3,4 },
{1102573,5,6,5,6,10,1,3,1,1,4 },
{1103608,10,10,10,4,8,1,8,10,1,4 },
{1103722,1,1,1,1,2,1,2,1,2,2 },
{1105257,3,7,7,4,4,9,4,8,1,4 },
{1105524,1,1,1,1,2,1,2,1,1,2 },
{1106095,4,1,1,3,2,1,3,1,1,2 },
{1106829,7,8,7,2,4,8,3,8,2,4 },
{1108370,9,5,8,1,2,3,2,1,5,4 },
{1108449,5,3,3,4,2,4,3,4,1,4 },
{1110102,10,3,6,2,3,5,4,10,2,4 },
{1110503,5,5,5,8,10,8,7,3,7,4 },
{1110524,10,5,5,6,8,8,7,1,1,4 },
{1111249,10,6,6,3,4,5,3,6,1,4 },
{1112209,8,10,10,1,3,6,3,9,1,4 },
{1113038,8,2,4,1,5,1,5,4,4,4 },
{1113483,5,2,3,1,6,10,5,1,1,4 },
{1113906,9,5,5,2,2,2,5,1,1,4 },
{1115282,5,3,5,5,3,3,4,10,1,4 },
{1115293,1,1,1,1,2,2,2,1,1,2 },
{1116116,9,10,10,1,10,8,3,3,1,4 },
{1116132,6,3,4,1,5,2,3,9,1,4 },
{1116192,1,1,1,1,2,1,2,1,1,2 },
{1116998,10,4,2,1,3,2,4,3,10,4 },
{1117152,4,1,1,1,2,1,3,1,1,2 },
{1118039,5,3,4,1,8,10,4,9,1,4 },
{1120559,8,3,8,3,4,9,8,9,8,4 },
{1121732,1,1,1,1,2,1,3,2,1,2 },
{1121919,5,1,3,1,2,1,2,1,1,2 },
{1123061,6,10,2,8,10,2,7,8,10,4 },
{1124651,1,3,3,2,2,1,7,2,1,2 },
{1125035,9,4,5,10,6,10,4,8,1,4 },
{1126417,10,6,4,1,3,4,3,2,3,4 },
{1131294,1,1,2,1,2,2,4,2,1,2 },
{1132347,1,1,4,1,2,1,2,1,1,2 },
{1133041,5,3,1,2,2,1,2,1,1,2 },
{1133136,3,1,1,1,2,3,3,1,1,2 },
{1136142,2,1,1,1,3,1,2,1,1,2 },
{1137156,2,2,2,1,1,1,7,1,1,2 },
{1143978,4,1,1,2,2,1,2,1,1,2 },
{1143978,5,2,1,1,2,1,3,1,1,2 },
{1147044,3,1,1,1,2,2,7,1,1,2 },
{1147699,3,5,7,8,8,9,7,10,7,4 },
{1147748,5,10,6,1,10,4,4,10,10,4 },
{1148278,3,3,6,4,5,8,4,4,1,4 },
{1148873,3,6,6,6,5,10,6,8,3,4 },
{1152331,4,1,1,1,2,1,3,1,1,2 },
{1155546,2,1,1,2,3,1,2,1,1,2 },
{1156272,1,1,1,1,2,1,3,1,1,2 },
{1156948,3,1,1,2,2,1,1,1,1,2 },
{1157734,4,1,1,1,2,1,3,1,1,2 },
{1158247,1,1,1,1,2,1,2,1,1,2 },
{1160476,2,1,1,1,2,1,3,1,1,2 },
{1164066,1,1,1,1,2,1,3,1,1,2 },
{1165297,2,1,1,2,2,1,1,1,1,2 },
{1165790,5,1,1,1,2,1,3,1,1,2 },
{1165926,9,6,9,2,10,6,2,9,10,4 },
{1166630,7,5,6,10,5,10,7,9,4,4 },
{1166654,10,3,5,1,10,5,3,10,2,4 },
{1167439,2,3,4,4,2,5,2,5,1,4 },
{1167471,4,1,2,1,2,1,3,1,1,2 },
{1168359,8,2,3,1,6,3,7,1,1,4 },
{1168736,10,10,10,10,10,1,8,8,8,4 },
{1169049,7,3,4,4,3,3,3,2,7,4 },
{1170419,10,10,10,8,2,10,4,1,1,4 },
{1170420,1,6,8,10,8,10,5,7,1,4 },
{1171710,1,1,1,1,2,1,2,3,1,2 },
{1171710,6,5,4,4,3,9,7,8,3,4 },
{1171795,1,3,1,2,2,2,5,3,2,2 },
{1171845,8,6,4,3,5,9,3,1,1,4 },
{1172152,10,3,3,10,2,10,7,3,3,4 },
{1173216,10,10,10,3,10,8,8,1,1,4 },
{1173235,3,3,2,1,2,3,3,1,1,2 },
{1173347,1,1,1,1,2,5,1,1,1,2 },
{1173347,8,3,3,1,2,2,3,2,1,2 },
{1173509,4,5,5,10,4,10,7,5,8,4 },
{1173514,1,1,1,1,4,3,1,1,1,2 },
{1173681,3,2,1,1,2,2,3,1,1,2 },
{1174057,1,1,2,2,2,1,3,1,1,2 },
{1174057,4,2,1,1,2,2,3,1,1,2 },
{1174131,10,10,10,2,10,10,5,3,3,4 },
{1174428,5,3,5,1,8,10,5,3,1,4 },
{1175937,5,4,6,7,9,7,8,10,1,4 },
{1176406,1,1,1,1,2,1,2,1,1,2 },
{1176881,7,5,3,7,4,10,7,5,5,4 }
};
private static readonly Dataset defaultDataset;
private static readonly IEnumerable defaultAllowedInputVariables;
private static readonly string defaultTargetVariable;
private static readonly ClassificationProblemData emptyProblemData;
public static ClassificationProblemData EmptyProblemData {
get { return EmptyProblemData; }
}
static ClassificationProblemData() {
defaultDataset = new Dataset(defaultVariableNames, defaultData);
defaultDataset.Name = "Wisconsin classification problem";
defaultDataset.Description = "subset from to ..";
defaultAllowedInputVariables = defaultVariableNames.Except(new List() { "sample", "class" });
defaultTargetVariable = "class";
var problemData = new ClassificationProblemData();
problemData.Parameters.Clear();
problemData.Name = "Empty Classification ProblemData";
problemData.Description = "This ProblemData acts as place holder before the correct problem data is loaded.";
problemData.isEmpty = true;
problemData.Parameters.Add(new FixedValueParameter(DatasetParameterName, "", new Dataset()));
problemData.Parameters.Add(new FixedValueParameter>(InputVariablesParameterName, ""));
problemData.Parameters.Add(new FixedValueParameter(TrainingPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
problemData.Parameters.Add(new FixedValueParameter(TestPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
problemData.Parameters.Add(new ConstrainedValueParameter(TargetVariableParameterName, new ItemSet()));
problemData.Parameters.Add(new FixedValueParameter(ClassNamesParameterName, "", new StringMatrix(0, 0).AsReadOnly()));
problemData.Parameters.Add(new FixedValueParameter(ClassificationPenaltiesParameterName, "", (DoubleMatrix)new DoubleMatrix(0, 0).AsReadOnly()));
emptyProblemData = problemData;
}
#endregion
#region parameter properties
public IConstrainedValueParameter TargetVariableParameter {
get { return (IConstrainedValueParameter)Parameters[TargetVariableParameterName]; }
}
public IFixedValueParameter ClassNamesParameter {
get { return (IFixedValueParameter)Parameters[ClassNamesParameterName]; }
}
public IConstrainedValueParameter PositiveClassParameter {
get { return (IConstrainedValueParameter)Parameters[PositiveClassParameterName]; }
}
public IFixedValueParameter ClassificationPenaltiesParameter {
get { return (IFixedValueParameter)Parameters[ClassificationPenaltiesParameterName]; }
}
#endregion
#region properties
public string TargetVariable {
get { return TargetVariableParameter.Value.Value; }
set {
if (value == null) throw new ArgumentNullException("targetVariable", "The provided value for the targetVariable is null.");
if (value == TargetVariable) return;
var matchingParameterValue = TargetVariableParameter.ValidValues.FirstOrDefault(v => v.Value == value);
if (matchingParameterValue == null) throw new ArgumentException("The provided value is not valid as the targetVariable.", "targetVariable");
TargetVariableParameter.Value = matchingParameterValue;
}
}
private List classValuesCache;
private List ClassValuesCache {
get {
if (classValuesCache == null) {
classValuesCache = Dataset.GetDoubleValues(TargetVariableParameter.Value.Value).Distinct().OrderBy(x => x).ToList();
}
return classValuesCache;
}
}
public IEnumerable ClassValues {
get { return ClassValuesCache; }
}
public int Classes {
get { return ClassValuesCache.Count; }
}
private List classNamesCache;
private List ClassNamesCache {
get {
if (classNamesCache == null) {
classNamesCache = new List();
for (int i = 0; i < ClassNamesParameter.Value.Rows; i++)
classNamesCache.Add(ClassNamesParameter.Value[i, 0]);
}
return classNamesCache;
}
}
public IEnumerable ClassNames {
get { return ClassNamesCache; }
}
public string PositiveClass {
get { return PositiveClassParameter.Value.Value; }
set {
var matchingValue = PositiveClassParameter.ValidValues.SingleOrDefault(x => x.Value == value);
if (matchingValue == null) throw new ArgumentException(string.Format("{0} cannot be set as positive class.", value));
PositiveClassParameter.Value = matchingValue;
}
}
#endregion
[StorableConstructor]
protected ClassificationProblemData(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterParameterEvents();
// BackwardsCompatibility3.4
#region Backwards compatible code, remove with 3.5
if (!Parameters.ContainsKey(PositiveClassParameterName)) {
var validValues = new ItemSet(ClassNames.Select(s => new StringValue(s).AsReadOnly()));
Parameters.Add(new ConstrainedValueParameter(PositiveClassParameterName,
"The positive class which is used for quality measure calculation (e.g., specifity, sensitivity,...)", validValues, validValues.First()));
}
#endregion
}
protected ClassificationProblemData(ClassificationProblemData original, Cloner cloner)
: base(original, cloner) {
RegisterParameterEvents();
}
public override IDeepCloneable Clone(Cloner cloner) {
if (this == emptyProblemData) return emptyProblemData;
return new ClassificationProblemData(this, cloner);
}
public ClassificationProblemData() : this(defaultDataset, defaultAllowedInputVariables, defaultTargetVariable) { }
public ClassificationProblemData(IClassificationProblemData classificationProblemData)
: this(classificationProblemData.Dataset, classificationProblemData.AllowedInputVariables, classificationProblemData.TargetVariable) {
TrainingPartition.Start = classificationProblemData.TrainingPartition.Start;
TrainingPartition.End = classificationProblemData.TrainingPartition.End;
TestPartition.Start = classificationProblemData.TestPartition.Start;
TestPartition.End = classificationProblemData.TestPartition.End;
PositiveClass = classificationProblemData.PositiveClass;
for (int i = 0; i < classificationProblemData.ClassNames.Count(); i++)
ClassNamesParameter.Value[i, 0] = classificationProblemData.ClassNames.ElementAt(i);
for (int i = 0; i < Classes; i++) {
for (int j = 0; j < Classes; j++) {
ClassificationPenaltiesParameter.Value[i, j] = classificationProblemData.GetClassificationPenalty(ClassValuesCache[i], ClassValuesCache[j]);
}
}
}
public ClassificationProblemData(Dataset dataset, IEnumerable allowedInputVariables, string targetVariable, IEnumerable transformations = null)
: base(dataset, allowedInputVariables, transformations ?? Enumerable.Empty()) {
var validTargetVariableValues = CheckVariablesForPossibleTargetVariables(dataset).Select(x => new StringValue(x).AsReadOnly()).ToList();
var target = validTargetVariableValues.Where(x => x.Value == targetVariable).DefaultIfEmpty(validTargetVariableValues.First()).First();
Parameters.Add(new ConstrainedValueParameter(TargetVariableParameterName, new ItemSet(validTargetVariableValues), target));
Parameters.Add(new FixedValueParameter(ClassNamesParameterName, ""));
Parameters.Add(new ConstrainedValueParameter(PositiveClassParameterName, "The positive class which is used for quality measure calculation (e.g., specifity, sensitivity,...)"));
Parameters.Add(new FixedValueParameter(ClassificationPenaltiesParameterName, ""));
RegisterParameterEvents();
ResetTargetVariableDependentMembers();
}
public static IEnumerable CheckVariablesForPossibleTargetVariables(Dataset dataset) {
int maxSamples = Math.Min(InspectedRowsToDetermineTargets, dataset.Rows);
var validTargetVariables = (from v in dataset.DoubleVariables
let distinctValues = dataset.GetDoubleValues(v)
.Take(maxSamples)
.Distinct()
.Count()
where distinctValues <= MaximumNumberOfClasses
select v).ToArray();
if (!validTargetVariables.Any())
throw new ArgumentException("Import of classification problem data was not successful, because no target variable was found." +
" A target variable must have at most " + MaximumNumberOfClasses + " distinct values to be applicable to classification.");
return validTargetVariables;
}
private void ResetTargetVariableDependentMembers() {
DeregisterParameterEvents();
((IStringConvertibleMatrix)ClassNamesParameter.Value).Columns = 1;
((IStringConvertibleMatrix)ClassNamesParameter.Value).Rows = ClassValuesCache.Count;
for (int i = 0; i < Classes; i++)
ClassNamesParameter.Value[i, 0] = "Class " + ClassValuesCache[i];
ClassNamesParameter.Value.ColumnNames = new List() { "ClassNames" };
ClassNamesParameter.Value.RowNames = ClassValues.Select(s => "ClassValue: " + s);
PositiveClassParameter.ValidValues.Clear();
foreach (var className in ClassNames) {
PositiveClassParameter.ValidValues.Add(new StringValue(className).AsReadOnly());
}
((IStringConvertibleMatrix)ClassificationPenaltiesParameter.Value).Rows = Classes;
((IStringConvertibleMatrix)ClassificationPenaltiesParameter.Value).Columns = Classes;
ClassificationPenaltiesParameter.Value.RowNames = ClassNames.Select(name => "Actual " + name);
ClassificationPenaltiesParameter.Value.ColumnNames = ClassNames.Select(name => "Estimated " + name);
for (int i = 0; i < Classes; i++) {
for (int j = 0; j < Classes; j++) {
if (i != j) ClassificationPenaltiesParameter.Value[i, j] = 1;
else ClassificationPenaltiesParameter.Value[i, j] = 0;
}
}
RegisterParameterEvents();
}
public string GetClassName(double classValue) {
if (!ClassValuesCache.Contains(classValue)) throw new ArgumentException();
int index = ClassValuesCache.IndexOf(classValue);
return ClassNamesCache[index];
}
public double GetClassValue(string className) {
if (!ClassNamesCache.Contains(className)) throw new ArgumentException();
int index = ClassNamesCache.IndexOf(className);
return ClassValuesCache[index];
}
public void SetClassName(double classValue, string className) {
if (!ClassValuesCache.Contains(classValue)) throw new ArgumentException();
int index = ClassValuesCache.IndexOf(classValue);
ClassNamesParameter.Value[index, 0] = className;
// updating of class names cache is not necessary here as the parameter value fires a changed event which updates the cache
}
public double GetClassificationPenalty(string correctClassName, string estimatedClassName) {
return GetClassificationPenalty(GetClassValue(correctClassName), GetClassValue(estimatedClassName));
}
public double GetClassificationPenalty(double correctClassValue, double estimatedClassValue) {
int correctClassIndex = ClassValuesCache.IndexOf(correctClassValue);
int estimatedClassIndex = ClassValuesCache.IndexOf(estimatedClassValue);
return ClassificationPenaltiesParameter.Value[correctClassIndex, estimatedClassIndex];
}
public void SetClassificationPenalty(string correctClassName, string estimatedClassName, double penalty) {
SetClassificationPenalty(GetClassValue(correctClassName), GetClassValue(estimatedClassName), penalty);
}
public void SetClassificationPenalty(double correctClassValue, double estimatedClassValue, double penalty) {
int correctClassIndex = ClassValuesCache.IndexOf(correctClassValue);
int estimatedClassIndex = ClassValuesCache.IndexOf(estimatedClassValue);
ClassificationPenaltiesParameter.Value[correctClassIndex, estimatedClassIndex] = penalty;
}
#region events
private void RegisterParameterEvents() {
TargetVariableParameter.ValueChanged += new EventHandler(TargetVariableParameter_ValueChanged);
ClassNamesParameter.Value.Reset += new EventHandler(Parameter_ValueChanged);
ClassNamesParameter.Value.ItemChanged += new EventHandler>(Parameter_ValueChanged);
ClassificationPenaltiesParameter.Value.ItemChanged += new EventHandler>(Parameter_ValueChanged);
ClassificationPenaltiesParameter.Value.Reset += new EventHandler(Parameter_ValueChanged);
}
private void DeregisterParameterEvents() {
TargetVariableParameter.ValueChanged -= new EventHandler(TargetVariableParameter_ValueChanged);
ClassNamesParameter.Value.Reset -= new EventHandler(Parameter_ValueChanged);
ClassNamesParameter.Value.ItemChanged -= new EventHandler>(Parameter_ValueChanged);
ClassificationPenaltiesParameter.Value.ItemChanged -= new EventHandler>(Parameter_ValueChanged);
ClassificationPenaltiesParameter.Value.Reset -= new EventHandler(Parameter_ValueChanged);
}
private void TargetVariableParameter_ValueChanged(object sender, EventArgs e) {
classValuesCache = null;
classNamesCache = null;
ResetTargetVariableDependentMembers();
OnChanged();
}
private void Parameter_ValueChanged(object sender, EventArgs e) {
var oldPositiveClass = PositiveClass;
var oldClassNames = classNamesCache;
var index = oldClassNames.IndexOf(oldPositiveClass);
classNamesCache = null;
ClassificationPenaltiesParameter.Value.RowNames = ClassNames.Select(name => "Actual " + name);
ClassificationPenaltiesParameter.Value.ColumnNames = ClassNames.Select(name => "Estimated " + name);
PositiveClassParameter.ValidValues.Clear();
foreach (var className in ClassNames) {
PositiveClassParameter.ValidValues.Add(new StringValue(className).AsReadOnly());
}
PositiveClassParameter.Value = PositiveClassParameter.ValidValues.ElementAt(index);
OnChanged();
}
#endregion
protected override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
IClassificationProblemData classificationProblemData = problemData as IClassificationProblemData;
if (classificationProblemData == null)
throw new ArgumentException("The problem data is no classification problem data. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
var returnValue = base.IsProblemDataCompatible(classificationProblemData, out errorMessage);
//check targetVariable
if (classificationProblemData.InputVariables.All(var => var.Value != TargetVariable)) {
errorMessage = string.Format("The target variable {0} is not present in the new problem data.", TargetVariable)
+ Environment.NewLine + errorMessage;
return false;
}
var newClassValues = classificationProblemData.Dataset.GetDoubleValues(TargetVariable).Distinct().OrderBy(x => x);
if (!newClassValues.SequenceEqual(ClassValues)) {
errorMessage = errorMessage + string.Format("The class values differ in the provided classification problem data.");
returnValue = false;
}
var newPositivieClassName = classificationProblemData.PositiveClass;
if (newPositivieClassName != PositiveClass) {
errorMessage = errorMessage + string.Format("The positive class differs in the provided classification problem data.");
returnValue = false;
}
return returnValue;
}
public override void AdjustProblemDataProperties(IDataAnalysisProblemData problemData) {
if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
ClassificationProblemData classificationProblemData = problemData as ClassificationProblemData;
if (classificationProblemData == null)
throw new ArgumentException("The problem data is not a classification problem data. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
base.AdjustProblemDataProperties(problemData);
TargetVariable = classificationProblemData.TargetVariable;
for (int i = 0; i < classificationProblemData.ClassNames.Count(); i++)
ClassNamesParameter.Value[i, 0] = classificationProblemData.ClassNames.ElementAt(i);
PositiveClass = classificationProblemData.PositiveClass;
for (int i = 0; i < Classes; i++) {
for (int j = 0; j < Classes; j++) {
ClassificationPenaltiesParameter.Value[i, j] = classificationProblemData.GetClassificationPenalty(ClassValuesCache[i], ClassValuesCache[j]);
}
}
}
}
}