#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Windows.Forms; using System.Windows.Forms.DataVisualization.Charting; using HeuristicLab.Algorithms.DataAnalysis; using HeuristicLab.Common; using HeuristicLab.MainForm; using HeuristicLab.Optimization; namespace HeuristicLab.Problems.DataAnalysis.Views { [View("Error Characteristics Curve")] [Content(typeof(IRegressionSolution))] public partial class RegressionSolutionErrorCharacteristicsCurveView : DataAnalysisSolutionEvaluationView { protected const string TrainingSamples = "Training"; protected const string TestSamples = "Test"; protected const string AllSamples = "All Samples"; public RegressionSolutionErrorCharacteristicsCurveView() : base() { InitializeComponent(); cmbSamples.Items.Add(TrainingSamples); cmbSamples.Items.Add(TestSamples); cmbSamples.Items.Add(AllSamples); cmbSamples.SelectedIndex = 0; residualComboBox.SelectedIndex = 0; chart.CustomizeAllChartAreas(); chart.ChartAreas[0].AxisX.Title = residualComboBox.SelectedItem.ToString(); chart.ChartAreas[0].AxisX.Minimum = 0.0; chart.ChartAreas[0].AxisX.Maximum = 0.0; chart.ChartAreas[0].AxisX.IntervalAutoMode = IntervalAutoMode.VariableCount; chart.ChartAreas[0].CursorX.Interval = 0.01; chart.ChartAreas[0].AxisY.Title = "Ratio of Residuals"; chart.ChartAreas[0].AxisY.Minimum = 0.0; chart.ChartAreas[0].AxisY.Maximum = 1.0; chart.ChartAreas[0].AxisY.MajorGrid.Interval = 0.2; chart.ChartAreas[0].CursorY.Interval = 0.01; } // the view holds one regression solution as content but also contains several other regression solutions for comparison // the following invariants must hold // (Solutions.IsEmpty && Content == null) || // (Solutions[0] == Content && Solutions.All(s => s.ProblemData.TargetVariable == Content.TargetVariable)) public new IRegressionSolution Content { get { return (IRegressionSolution)base.Content; } set { base.Content = value; } } private readonly IList solutions = new List(); public IEnumerable Solutions { get { return solutions.AsEnumerable(); } } public IRegressionProblemData ProblemData { get { if (Content == null) return null; return Content.ProblemData; } } protected override void RegisterContentEvents() { base.RegisterContentEvents(); Content.ModelChanged += new EventHandler(Content_ModelChanged); Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged); } protected override void DeregisterContentEvents() { base.DeregisterContentEvents(); Content.ModelChanged -= new EventHandler(Content_ModelChanged); Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged); } protected virtual void Content_ModelChanged(object sender, EventArgs e) { if (InvokeRequired) Invoke((Action)Content_ModelChanged, sender, e); else { // recalculate baseline solutions (for symbolic regression models the features used in the model might have changed) solutions.Clear(); // remove all solutions.Add(Content); // re-add the first solution // and recalculate all other solutions foreach (var sol in CreateBaselineSolutions()) { solutions.Add(sol); } UpdateChart(); } } protected virtual void Content_ProblemDataChanged(object sender, EventArgs e) { if (InvokeRequired) Invoke((Action)Content_ProblemDataChanged, sender, e); else { // recalculate baseline solutions solutions.Clear(); // remove all solutions.Add(Content); // re-add the first solution // and recalculate all other solutions foreach (var sol in CreateBaselineSolutions()) { solutions.Add(sol); } UpdateChart(); } } protected override void OnContentChanged() { base.OnContentChanged(); // the content object is always stored as the first element in solutions solutions.Clear(); ReadOnly = Content == null; if (Content != null) { // recalculate all solutions solutions.Add(Content); if (ProblemData.TrainingIndices.Any()) { foreach (var sol in CreateBaselineSolutions()) solutions.Add(sol); // more solutions can be added by drag&drop } } UpdateChart(); } protected virtual void UpdateChart() { chart.Series.Clear(); chart.Annotations.Clear(); chart.ChartAreas[0].AxisX.Maximum = 0.0; chart.ChartAreas[0].CursorX.Interval = 0.01; if (Content == null) return; if (cmbSamples.SelectedItem.ToString() == TrainingSamples && !ProblemData.TrainingIndices.Any()) return; if (cmbSamples.SelectedItem.ToString() == TestSamples && !ProblemData.TestIndices.Any()) return; foreach (var sol in Solutions) { AddSeries(sol); } chart.ChartAreas[0].AxisX.Title = string.Format("{0} ({1})", residualComboBox.SelectedItem, Content.ProblemData.TargetVariable); } protected void AddSeries(IRegressionSolution solution) { if (chart.Series.Any(s => s.Name == solution.Name)) return; Series solutionSeries = new Series(solution.Name); solutionSeries.Tag = solution; solutionSeries.ChartType = SeriesChartType.FastLine; var residuals = GetResiduals(GetOriginalValues(), GetEstimatedValues(solution)); var maxValue = residuals.Max(); if (maxValue >= chart.ChartAreas[0].AxisX.Maximum) { double scale = Math.Pow(10, Math.Floor(Math.Log10(maxValue))); var maximum = scale * (1 + (int)(maxValue / scale)); chart.ChartAreas[0].AxisX.Maximum = maximum; chart.ChartAreas[0].CursorX.Interval = residuals.Min() / 100; } UpdateSeries(residuals, solutionSeries); solutionSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(solutionSeries); solutionSeries.LegendToolTip = "Double-click to open model"; chart.Series.Add(solutionSeries); } protected void UpdateSeries(List residuals, Series series) { series.Points.Clear(); residuals.Sort(); if (!residuals.Any() || residuals.All(double.IsNaN)) return; series.Points.AddXY(0, 0); for (int i = 0; i < residuals.Count; i++) { var point = new DataPoint(); if (residuals[i] > chart.ChartAreas[0].AxisX.Maximum) { point.XValue = chart.ChartAreas[0].AxisX.Maximum; point.YValues[0] = ((double)i) / residuals.Count; point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0]; series.Points.Add(point); break; } point.XValue = residuals[i]; point.YValues[0] = ((double)i + 1) / residuals.Count; point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0]; series.Points.Add(point); } if (series.Points.Last().XValue < chart.ChartAreas[0].AxisX.Maximum) { var point = new DataPoint(); point.XValue = chart.ChartAreas[0].AxisX.Maximum; point.YValues[0] = 1; point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0]; series.Points.Add(point); } } protected IEnumerable GetOriginalValues() { IEnumerable originalValues; switch (cmbSamples.SelectedItem.ToString()) { case TrainingSamples: originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices); break; case TestSamples: originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices); break; case AllSamples: originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable); break; default: throw new NotSupportedException(); } return originalValues; } protected IEnumerable GetEstimatedValues(IRegressionSolution solution) { IEnumerable estimatedValues; switch (cmbSamples.SelectedItem.ToString()) { case TrainingSamples: estimatedValues = solution.EstimatedTrainingValues; break; case TestSamples: estimatedValues = solution.EstimatedTestValues; break; case AllSamples: estimatedValues = solution.EstimatedValues; break; default: throw new NotSupportedException(); } return estimatedValues; } protected virtual List GetResiduals(IEnumerable originalValues, IEnumerable estimatedValues) { switch (residualComboBox.SelectedItem.ToString()) { case "Absolute error": return originalValues.Zip(estimatedValues, (x, y) => Math.Abs(x - y)) .Where(r => !double.IsNaN(r) && !double.IsInfinity(r)).ToList(); case "Squared error": return originalValues.Zip(estimatedValues, (x, y) => (x - y) * (x - y)) .Where(r => !double.IsNaN(r) && !double.IsInfinity(r)).ToList(); case "Relative error": return originalValues.Zip(estimatedValues, (x, y) => x.IsAlmost(0.0) ? -1 : Math.Abs((x - y) / x)) .Where(r => r > 0 && !double.IsNaN(r) && !double.IsInfinity(r)) // remove entries where the original value is 0 .ToList(); default: throw new NotSupportedException(); } } private double CalculateAreaOverCurve(Series series) { if (series.Points.Count < 1) return 0; double auc = 0.0; for (int i = 1; i < series.Points.Count; i++) { double width = series.Points[i].XValue - series.Points[i - 1].XValue; double y1 = 1 - series.Points[i - 1].YValues[0]; double y2 = 1 - series.Points[i].YValues[0]; auc += (y1 + y2) * width / 2; } return auc; } protected void cmbSamples_SelectedIndexChanged(object sender, EventArgs e) { if (InvokeRequired) Invoke((Action)cmbSamples_SelectedIndexChanged, sender, e); else UpdateChart(); } private void Chart_MouseDoubleClick(object sender, MouseEventArgs e) { HitTestResult result = chart.HitTest(e.X, e.Y); if (result.ChartElementType != ChartElementType.LegendItem) return; MainFormManager.MainForm.ShowContent((IRegressionSolution)result.Series.Tag); } protected virtual IEnumerable CreateBaselineSolutions() { yield return CreateConstantSolution(); yield return CreateLinearSolution(); } private IRegressionSolution CreateConstantSolution() { double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average(); var model = new ConstantModel(averageTrainingTarget, ProblemData.TargetVariable); var solution = model.CreateRegressionSolution(ProblemData); solution.Name = "Baseline (constant)"; return solution; } private IRegressionSolution CreateLinearSolution() { double rmsError, cvRmsError; var solution = LinearRegression.CreateLinearRegressionSolution((IRegressionProblemData)ProblemData.Clone(), out rmsError, out cvRmsError); solution.Name = "Baseline (linear)"; return solution; } private void chart_MouseMove(object sender, MouseEventArgs e) { HitTestResult result = chart.HitTest(e.X, e.Y); if (result.ChartElementType == ChartElementType.LegendItem) { Cursor = Cursors.Hand; } else { Cursor = Cursors.Default; } } private void chart_DragDrop(object sender, DragEventArgs e) { if (e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) { var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat); var dataAsRegressionSolution = data as IRegressionSolution; var dataAsResult = data as IResult; if (dataAsRegressionSolution != null) { solutions.Add((IRegressionSolution)dataAsRegressionSolution.Clone()); } else if (dataAsResult != null && dataAsResult.Value is IRegressionSolution) { solutions.Add((IRegressionSolution)dataAsResult.Value.Clone()); } UpdateChart(); } } private void chart_DragEnter(object sender, DragEventArgs e) { e.Effect = DragDropEffects.None; if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return; var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat); var dataAsRegressionSolution = data as IRegressionSolution; var dataAsResult = data as IResult; if (!ReadOnly && (dataAsRegressionSolution != null || (dataAsResult != null && dataAsResult.Value is IRegressionSolution))) { e.Effect = DragDropEffects.Copy; } } private void residualComboBox_SelectedIndexChanged(object sender, EventArgs e) { UpdateChart(); } } }