#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[Item("LaTeX String Formatter", "Formatter for symbolic expression trees for import into LaTeX documents.")]
[StorableType("D7186DFF-1596-4A58-B27D-974DF0D93E4F")]
public sealed class SymbolicDataAnalysisExpressionLatexFormatter : NamedItem, ISymbolicExpressionTreeStringFormatter {
private readonly List> constants;
private int constIndex;
private int targetCount;
private int currentLag;
private string targetVariable;
private bool containsTimeSeriesSymbol;
[StorableConstructor]
private SymbolicDataAnalysisExpressionLatexFormatter(StorableConstructorFlag _) : base(_) { }
private SymbolicDataAnalysisExpressionLatexFormatter(SymbolicDataAnalysisExpressionLatexFormatter original, Cloner cloner)
: base(original, cloner) {
constants = new List>(original.constants);
constIndex = original.constIndex;
currentLag = original.currentLag;
targetCount = original.targetCount;
}
public SymbolicDataAnalysisExpressionLatexFormatter()
: base() {
Name = ItemName;
Description = ItemDescription;
constants = new List>();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicDataAnalysisExpressionLatexFormatter(this, cloner);
}
public string Format(ISymbolicExpressionTree symbolicExpressionTree) {
return Format(symbolicExpressionTree, null);
}
public string Format(ISymbolicExpressionTree symbolicExpressionTree, string targetVariable) {
try {
StringBuilder strBuilder = new StringBuilder();
constants.Clear();
constIndex = 0;
this.targetVariable = targetVariable;
containsTimeSeriesSymbol = symbolicExpressionTree.IterateNodesBreadth().Any(n => IsTimeSeriesSymbol(n.Symbol));
strBuilder.AppendLine(FormatRecursively(symbolicExpressionTree.Root));
return strBuilder.ToString();
} catch (NotImplementedException ex) {
return ex.Message + Environment.NewLine + ex.StackTrace;
}
}
static bool IsTimeSeriesSymbol(ISymbol s) {
return s is TimeLag || s is Integral || s is Derivative || s is LaggedVariable;
}
private string FormatRecursively(ISymbolicExpressionTreeNode node) {
StringBuilder strBuilder = new StringBuilder();
currentLag = 0;
FormatBegin(node, strBuilder);
if (node.SubtreeCount > 0) {
strBuilder.Append(FormatRecursively(node.GetSubtree(0)));
}
int i = 1;
foreach (var subTree in node.Subtrees.Skip(1)) {
FormatSep(node, strBuilder, i);
// format the whole subtree
strBuilder.Append(FormatRecursively(subTree));
i++;
}
FormatEnd(node, strBuilder);
return strBuilder.ToString();
}
private void FormatBegin(ISymbolicExpressionTreeNode node, StringBuilder strBuilder) {
if (node.Symbol is Addition) {
strBuilder.Append(@" \left( ");
} else if (node.Symbol is Subtraction) {
if (node.SubtreeCount == 1) {
strBuilder.Append(@"- \left( ");
} else {
strBuilder.Append(@" \left( ");
}
} else if (node.Symbol is Multiplication) {
} else if (node.Symbol is Division) {
if (node.SubtreeCount == 1) {
strBuilder.Append(@" \cfrac{1}{");
} else {
strBuilder.Append(@" \cfrac{ ");
}
} else if (node.Symbol is Absolute) {
strBuilder.Append(@"\operatorname{abs} \left( ");
} else if (node.Symbol is AnalyticQuotient) {
strBuilder.Append(@" \frac { ");
} else if (node.Symbol is Average) {
// skip output of (1/1) if only one subtree
if (node.SubtreeCount > 1) {
strBuilder.Append(@" \cfrac{1}{" + node.SubtreeCount + @"}");
}
strBuilder.Append(@" \left( ");
} else if (node.Symbol is Logarithm) {
strBuilder.Append(@"\log \left( ");
} else if (node.Symbol is Exponential) {
strBuilder.Append(@"\exp \left( ");
} else if (node.Symbol is Square) {
strBuilder.Append(@"\left(");
} else if (node.Symbol is SquareRoot) {
strBuilder.Append(@"\sqrt{");
} else if (node.Symbol is Cube) {
strBuilder.Append(@"\left(");
} else if (node.Symbol is CubeRoot) {
strBuilder.Append(@"\operatorname{cbrt}\left(");
} else if (node.Symbol is Sine) {
strBuilder.Append(@"\sin \left( ");
} else if (node.Symbol is Cosine) {
strBuilder.Append(@"\cos \left( ");
} else if (node.Symbol is Tangent) {
strBuilder.Append(@"\tan \left( ");
} else if (node.Symbol is HyperbolicTangent) {
strBuilder.Append(@"\tanh \left( ");
} else if (node.Symbol is AiryA) {
strBuilder.Append(@"\operatorname{airy}_a \left( ");
} else if (node.Symbol is AiryB) {
strBuilder.Append(@"\operatorname{airy}_b \left( ");
} else if (node.Symbol is Bessel) {
strBuilder.Append(@"\operatorname{bessel}_1 \left( ");
} else if (node.Symbol is CosineIntegral) {
strBuilder.Append(@"\operatorname{cosInt} \left( ");
} else if (node.Symbol is Dawson) {
strBuilder.Append(@"\operatorname{dawson} \left( ");
} else if (node.Symbol is Erf) {
strBuilder.Append(@"\operatorname{erf} \left( ");
} else if (node.Symbol is ExponentialIntegralEi) {
strBuilder.Append(@"\operatorname{expInt}_i \left( ");
} else if (node.Symbol is FresnelCosineIntegral) {
strBuilder.Append(@"\operatorname{fresnel}_\operatorname{cosInt} \left( ");
} else if (node.Symbol is FresnelSineIntegral) {
strBuilder.Append(@"\operatorname{fresnel}_\operatorname{sinInt} \left( ");
} else if (node.Symbol is Gamma) {
strBuilder.Append(@"\Gamma \left( ");
} else if (node.Symbol is HyperbolicCosineIntegral) {
strBuilder.Append(@"\operatorname{hypCosInt} \left( ");
} else if (node.Symbol is HyperbolicSineIntegral) {
strBuilder.Append(@"\operatorname{hypSinInt} \left( ");
} else if (node.Symbol is Norm) {
strBuilder.Append(@"\operatorname{norm} \left( ");
} else if (node.Symbol is Psi) {
strBuilder.Append(@"\operatorname{digamma} \left( ");
} else if (node.Symbol is SineIntegral) {
strBuilder.Append(@"\operatorname{sinInt} \left( ");
} else if (node.Symbol is GreaterThan) {
strBuilder.Append(@" \left( ");
} else if (node.Symbol is LessThan) {
strBuilder.Append(@" \left( ");
} else if (node.Symbol is And) {
strBuilder.Append(@" \left( \left( ");
} else if (node.Symbol is Or) {
strBuilder.Append(@" \left( \left( ");
} else if (node.Symbol is Not) {
strBuilder.Append(@" \neg \left( ");
} else if (node.Symbol is IfThenElse) {
strBuilder.Append(@" \operatorname{if} \left( ");
} else if (node.Symbol is Constant) {
var constName = "c_{" + constIndex + "}";
constIndex++;
var constNode = node as ConstantTreeNode;
if (constNode.Value.IsAlmost(1.0)) {
strBuilder.Append("1 ");
} else {
strBuilder.Append(constName);
constants.Add(new KeyValuePair(constName, constNode.Value));
}
} else if (node.Symbol is FactorVariable) {
var factorNode = node as FactorVariableTreeNode;
var constName = "c_{" + constIndex + "}";
strBuilder.Append(constName + " ");
foreach (var e in factorNode.Symbol.GetVariableValues(factorNode.VariableName)
.Zip(factorNode.Weights, Tuple.Create)) {
constants.Add(new KeyValuePair("c_{" + constIndex + ", " + EscapeLatexString(factorNode.VariableName) + "=" + EscapeLatexString(e.Item1) + "}", e.Item2));
}
constIndex++;
} else if (node.Symbol is BinaryFactorVariable) {
var binFactorNode = node as BinaryFactorVariableTreeNode;
if (!binFactorNode.Weight.IsAlmost((1.0))) {
var constName = "c_{" + constIndex + "}";
strBuilder.Append(constName + " \\cdot");
constants.Add(new KeyValuePair(constName, binFactorNode.Weight));
constIndex++;
}
strBuilder.Append("(" + EscapeLatexString(binFactorNode.VariableName));
strBuilder.Append(LagToString(currentLag));
strBuilder.Append(" = " + EscapeLatexString(binFactorNode.VariableValue) + " )");
} else if (node.Symbol is LaggedVariable) {
var laggedVarNode = node as LaggedVariableTreeNode;
if (!laggedVarNode.Weight.IsAlmost(1.0)) {
var constName = "c_{" + constIndex + "}";
strBuilder.Append(constName + " \\cdot");
constants.Add(new KeyValuePair(constName, laggedVarNode.Weight));
constIndex++;
}
strBuilder.Append(EscapeLatexString(laggedVarNode.VariableName));
strBuilder.Append(LagToString(currentLag + laggedVarNode.Lag));
} else if (node.Symbol is Variable) {
var varNode = node as VariableTreeNode;
if (!varNode.Weight.IsAlmost((1.0))) {
var constName = "c_{" + constIndex + "}";
strBuilder.Append(constName + " \\cdot");
constants.Add(new KeyValuePair(constName, varNode.Weight));
constIndex++;
}
strBuilder.Append(EscapeLatexString(varNode.VariableName));
strBuilder.Append(LagToString(currentLag));
} else if (node.Symbol is ProgramRootSymbol) {
strBuilder
.AppendLine("\\begin{align*}")
.AppendLine("\\nonumber");
} else if (node.Symbol is Defun) {
var defunNode = node as DefunTreeNode;
strBuilder.Append(defunNode.FunctionName + " & = ");
} else if (node.Symbol is InvokeFunction) {
var invokeNode = node as InvokeFunctionTreeNode;
strBuilder.Append(invokeNode.Symbol.FunctionName + @" \left( ");
} else if (node.Symbol is StartSymbol) {
FormatStartSymbol(strBuilder);
} else if (node.Symbol is Argument) {
var argSym = node.Symbol as Argument;
strBuilder.Append(" ARG+" + argSym.ArgumentIndex + " ");
} else if (node.Symbol is Derivative) {
strBuilder.Append(@" \cfrac{d \left( ");
} else if (node.Symbol is TimeLag) {
var laggedNode = node as ILaggedTreeNode;
currentLag += laggedNode.Lag;
} else if (node.Symbol is Power) {
strBuilder.Append(@" \left( ");
} else if (node.Symbol is Root) {
strBuilder.Append(@" \left( ");
} else if (node.Symbol is Integral) {
// actually a new variable for t is needed in all subtrees (TODO)
var laggedTreeNode = node as ILaggedTreeNode;
strBuilder.Append(@"\sum_{t=" + (laggedTreeNode.Lag + currentLag) + @"}^0 \left( ");
} else if (node.Symbol is VariableCondition) {
var conditionTreeNode = node as VariableConditionTreeNode;
var constName = "c_{" + constants.Count + "}";
string p = @"1 / 1 + \exp - " + constName + " ";
constants.Add(new KeyValuePair(constName, conditionTreeNode.Slope));
constIndex++;
var const2Name = "c_{" + constants.Count + @"}";
p += @" \cdot " + EscapeLatexString(conditionTreeNode.VariableName) + LagToString(currentLag) + " - " + const2Name + " ";
constants.Add(new KeyValuePair(const2Name, conditionTreeNode.Threshold));
constIndex++;
strBuilder.Append(@" \left( " + p + @"\cdot ");
} else {
throw new NotImplementedException("Export of " + node.Symbol + " is not implemented.");
}
}
private void FormatSep(ISymbolicExpressionTreeNode node, StringBuilder strBuilder, int step) {
if (node.Symbol is Addition) {
strBuilder.Append(" + ");
} else if (node.Symbol is Subtraction) {
strBuilder.Append(" - ");
} else if (node.Symbol is Multiplication) {
strBuilder.Append(@" \cdot ");
} else if (node.Symbol is Division) {
if (step + 1 == node.SubtreeCount)
strBuilder.Append(@"}{");
else
strBuilder.Append(@" }{ \cfrac{ ");
} else if (node.Symbol is Absolute) {
throw new InvalidOperationException();
} else if (node.Symbol is AnalyticQuotient) {
strBuilder.Append(@"}{\sqrt{1 + \left( ");
} else if (node.Symbol is Average) {
strBuilder.Append(@" + ");
} else if (node.Symbol is Logarithm) {
throw new InvalidOperationException();
} else if (node.Symbol is Exponential) {
throw new InvalidOperationException();
} else if (node.Symbol is Square) {
throw new InvalidOperationException();
} else if (node.Symbol is SquareRoot) {
throw new InvalidOperationException();
} else if (node.Symbol is Cube) {
throw new InvalidOperationException();
} else if (node.Symbol is CubeRoot) {
throw new InvalidOperationException();
} else if (node.Symbol is Sine) {
throw new InvalidOperationException();
} else if (node.Symbol is Cosine) {
throw new InvalidOperationException();
} else if (node.Symbol is Tangent) {
throw new InvalidOperationException();
} else if (node.Symbol is HyperbolicTangent) {
throw new InvalidOperationException();
} else if (node.Symbol is AiryA) {
throw new InvalidOperationException();
} else if (node.Symbol is AiryB) {
throw new InvalidOperationException();
} else if (node.Symbol is Bessel) {
throw new InvalidOperationException();
} else if (node.Symbol is CosineIntegral) {
throw new InvalidOperationException();
} else if (node.Symbol is Dawson) {
throw new InvalidOperationException();
} else if (node.Symbol is Erf) {
throw new InvalidOperationException();
} else if (node.Symbol is ExponentialIntegralEi) {
throw new InvalidOperationException();
} else if (node.Symbol is FresnelCosineIntegral) {
throw new InvalidOperationException();
} else if (node.Symbol is FresnelSineIntegral) {
throw new InvalidOperationException();
} else if (node.Symbol is Gamma) {
throw new InvalidOperationException();
} else if (node.Symbol is HyperbolicCosineIntegral) {
throw new InvalidOperationException();
} else if (node.Symbol is HyperbolicSineIntegral) {
throw new InvalidOperationException();
} else if (node.Symbol is Norm) {
throw new InvalidOperationException();
} else if (node.Symbol is Psi) {
throw new InvalidOperationException();
} else if (node.Symbol is SineIntegral) {
throw new InvalidOperationException();
} else if (node.Symbol is GreaterThan) {
strBuilder.Append(@" > ");
} else if (node.Symbol is LessThan) {
strBuilder.Append(@" < ");
} else if (node.Symbol is And) {
strBuilder.Append(@" > 0 \right) \land \left(");
} else if (node.Symbol is Or) {
strBuilder.Append(@" > 0 \right) \lor \left(");
} else if (node.Symbol is Not) {
throw new InvalidOperationException();
} else if (node.Symbol is IfThenElse) {
strBuilder.Append(@" , ");
} else if (node.Symbol is ProgramRootSymbol) {
strBuilder.Append(@"\\" + Environment.NewLine);
} else if (node.Symbol is Defun) {
} else if (node.Symbol is InvokeFunction) {
strBuilder.Append(" , ");
} else if (node.Symbol is StartSymbol) {
strBuilder.Append(@"\\" + Environment.NewLine);
FormatStartSymbol(strBuilder);
} else if (node.Symbol is Power) {
strBuilder.Append(@"\right) ^ { \operatorname{round} \left(");
} else if (node.Symbol is Root) {
strBuilder.Append(@"\right) ^ { \cfrac{1}{ \operatorname{round} \left(");
} else if (node.Symbol is VariableCondition) {
var conditionTreeNode = node as VariableConditionTreeNode;
var const1Name = "c_{" + constants.Count + "}";
string p = @"1 / \left( 1 + \exp \left( - " + const1Name + " ";
constants.Add(new KeyValuePair(const1Name, conditionTreeNode.Slope));
constIndex++;
var const2Name = "c_{" + constants.Count + "}";
p += @" \cdot " + EscapeLatexString(conditionTreeNode.VariableName) + LagToString(currentLag) + " - " + const2Name + " \right) \right) \right) ";
constants.Add(new KeyValuePair(const2Name, conditionTreeNode.Threshold));
constIndex++;
strBuilder.Append(@" + \left( 1 - " + p + @" \right) \cdot ");
} else {
throw new NotImplementedException("Export of " + node.Symbol + " is not implemented.");
}
}
private void FormatEnd(ISymbolicExpressionTreeNode node, StringBuilder strBuilder) {
if (node.Symbol is Addition) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Subtraction) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Multiplication) {
} else if (node.Symbol is Division) {
strBuilder.Append(" } ");
for (int i = 2; i < node.SubtreeCount; i++)
strBuilder.Append(" } ");
} else if (node.Symbol is Absolute) {
strBuilder.Append(@" \right)");
} else if (node.Symbol is AnalyticQuotient) {
strBuilder.Append(@" \right)^2}}");
} else if (node.Symbol is Average) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Logarithm) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Exponential) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Square) {
strBuilder.Append(@"\right)^2");
} else if (node.Symbol is SquareRoot) {
strBuilder.Append(@"}");
} else if (node.Symbol is Cube) {
strBuilder.Append(@"\right)^3");
} else if (node.Symbol is CubeRoot) {
strBuilder.Append(@"\right)");
} else if (node.Symbol is Sine) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Cosine) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Tangent) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is HyperbolicTangent) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is AiryA) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is AiryB) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Bessel) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is CosineIntegral) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Dawson) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Erf) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is ExponentialIntegralEi) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is FresnelCosineIntegral) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is FresnelSineIntegral) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Gamma) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is HyperbolicCosineIntegral) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is HyperbolicSineIntegral) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Norm) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Psi) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is SineIntegral) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is GreaterThan) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is LessThan) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is And) {
strBuilder.Append(@" > 0 \right) \right) ");
} else if (node.Symbol is Or) {
strBuilder.Append(@" > 0 \right) \right) ");
} else if (node.Symbol is Not) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is IfThenElse) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is Constant) {
} else if (node.Symbol is LaggedVariable) {
} else if (node.Symbol is Variable) {
} else if (node.Symbol is FactorVariable) {
} else if (node.Symbol is BinaryFactorVariable) {
} else if (node.Symbol is ProgramRootSymbol) {
strBuilder
.AppendLine("\\end{align*}")
.AppendLine("\\begin{align*}")
.AppendLine("\\nonumber");
// output all constant values
if (constants.Count > 0) {
foreach (var constant in constants) {
// replace "." with ".&" to align decimal points
var constStr = string.Format(System.Globalization.NumberFormatInfo.InvariantInfo, "{0:G5}", constant.Value);
if (!constStr.Contains(".")) constStr = constStr + ".0";
constStr = constStr.Replace(".", "&."); // fix problem in rendering of aligned expressions
strBuilder.Append(constant.Key + "& = & " + constStr);
strBuilder.Append(@"\\");
}
}
strBuilder.AppendLine("\\end{align*}");
} else if (node.Symbol is Defun) {
} else if (node.Symbol is InvokeFunction) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is StartSymbol) {
} else if (node.Symbol is Argument) {
} else if (node.Symbol is Derivative) {
strBuilder.Append(@" \right) }{dt} ");
} else if (node.Symbol is TimeLag) {
var laggedNode = node as ILaggedTreeNode;
currentLag -= laggedNode.Lag;
} else if (node.Symbol is Power) {
strBuilder.Append(@" \right) } ");
} else if (node.Symbol is Root) {
strBuilder.Append(@" \right) } } ");
} else if (node.Symbol is Integral) {
strBuilder.Append(@" \right) ");
} else if (node.Symbol is VariableCondition) {
strBuilder.Append(@"\right) ");
} else {
throw new NotImplementedException("Export of " + node.Symbol + " is not implemented.");
}
}
private void FormatStartSymbol(StringBuilder strBuilder) {
strBuilder.Append(targetVariable ?? "target_" + (targetCount++));
if (containsTimeSeriesSymbol)
strBuilder.Append("(t)");
strBuilder.Append(" & = ");
}
private string LagToString(int lag) {
if (lag < 0) {
return "(t" + lag + ")";
} else if (lag > 0) {
return "(t+" + lag + ")";
} else return "";
}
private string EscapeLatexString(string s) {
return "\\text{" +
s
.Replace("\\", "\\\\")
.Replace("{", "\\{")
.Replace("}", "\\}")
+ "}";
}
}
}