#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[Item("ProbabilisticFunctionalCrossover", "An operator which performs subtree swapping based on the behavioral similarity between subtrees:\n" +
"- Take two parent individuals P0 and P1\n" +
"- Randomly choose a node N from P0\n" +
"- For each matching node M from P1, calculate the behavioral distance:\n" +
"\t\tD(N,M) = 0.5 * ( abs(max(N) - max(M)) + abs(min(N) - min(M)) )\n" +
"- Make a probabilistic weighted choice of node M from P1, based on the inversed and normalized behavioral distance")]
public sealed class SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover : SymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData {
[StorableConstructor]
private SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover(bool deserializing) : base(deserializing) { }
private SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover(SymbolicDataAnalysisExpressionCrossover original, Cloner cloner)
: base(original, cloner) { }
public SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover()
: base() {
name = "ProbabilisticFunctionalCrossover";
}
public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover(this, cloner); }
public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
ISymbolicDataAnalysisExpressionTreeInterpreter interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
List rows = GenerateRowsToEvaluate().ToList();
T problemData = ProblemDataParameter.ActualValue;
return Cross(random, parent0, parent1, interpreter, problemData,
rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
}
///
/// Takes two parent individuals P0 and P1.
/// Randomly choose a node i from the first parent, then for each matching node j from the second parent, calculate the behavioral distance based on the range:
/// d(i,j) = 0.5 * ( abs(max(i) - max(j)) + abs(min(i) - min(j)) ).
/// Next, assign probabilities for the selection of a node j based on the inversed and normalized behavioral distance, then make a random weighted choice.
///
public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, T problemData, IList rows, int maxDepth, int maxLength) {
var crossoverPoints0 = new List();
parent0.Root.ForEachNodePostfix((n) => {
// the if clauses prevent the root or the startnode from being selected, although the startnode can be the parent of the node being swapped.
if (n.Parent != null && n.Parent != parent0.Root) {
crossoverPoints0.Add(new CutPoint(n.Parent, n));
}
});
var crossoverPoint0 = crossoverPoints0.SelectRandom(random);
int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();
var allowedBranches = new List();
parent1.Root.ForEachNodePostfix((n) => {
if (n.Parent != null && n.Parent != parent1.Root) {
if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n))
allowedBranches.Add(n);
}
});
if (allowedBranches.Count == 0)
return parent0;
var dataset = problemData.Dataset;
// create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
var rootSymbol = new ProgramRootSymbol();
var startSymbol = new StartSymbol();
var tree0 = CreateTreeFromNode(random, crossoverPoint0.Child, rootSymbol, startSymbol); // this will change crossoverPoint0.Child.Parent
double min0 = 0.0, max0 = 0.0;
foreach (double v in interpreter.GetSymbolicExpressionTreeValues(tree0, dataset, rows)) {
if (min0 > v) min0 = v;
if (max0 < v) max0 = v;
}
crossoverPoint0.Child.Parent = crossoverPoint0.Parent; // restore correct parent
var weights = new List();
foreach (var node in allowedBranches) {
var parent = node.Parent;
var tree1 = CreateTreeFromNode(random, node, rootSymbol, startSymbol);
double min1 = 0.0, max1 = 0.0;
foreach (double v in interpreter.GetSymbolicExpressionTreeValues(tree1, dataset, rows)) {
if (min1 > v) min1 = v;
if (max1 < v) max1 = v;
}
double behavioralDistance = (Math.Abs(min0 - min1) + Math.Abs(max0 - max1)) / 2; // this can be NaN of Infinity because some trees are crazy like exp(exp(exp(...))), we correct that below
weights.Add(behavioralDistance);
node.Parent = parent; // restore correct node parent
}
// remove branches with an infinite or NaN behavioral distance
for (int i = weights.Count - 1; i >= 0; --i) {
if (Double.IsNaN(weights[i]) || Double.IsInfinity(weights[i])) {
weights.RemoveAt(i);
allowedBranches.RemoveAt(i);
}
}
// check if there are any allowed branches left
if (allowedBranches.Count == 0)
return parent0;
ISymbolicExpressionTreeNode selectedBranch;
double sum = weights.Sum();
if (sum.IsAlmost(0.0) || weights.Count == 1) // if there is only one allowed branch, or if all weights are zero
selectedBranch = allowedBranches[0];
else {
for (int i = 0; i != weights.Count; ++i) // normalize and invert values
weights[i] = 1 - weights[i] / sum;
sum = weights.Sum(); // take new sum
// compute the probabilities (selection weights)
for (int i = 0; i != weights.Count; ++i)
weights[i] /= sum;
selectedBranch = allowedBranches.SelectRandom(weights, random);
}
Swap(crossoverPoint0, selectedBranch);
return parent0;
}
}
}