#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Random;
using static HeuristicLab.Problems.DataAnalysis.Symbolic.SymbolicExpressionHashExtensions;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[Item("DiversityCrossover", "Simple crossover operator preventing swap between subtrees with the same hash value.")]
[StorableType("ED35B0D9-9704-4D32-B10B-8F9870E76781")]
public sealed class SymbolicDataAnalysisExpressionDiversityPreservingCrossover : SymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData {
private const string InternalCrossoverPointProbabilityParameterName = "InternalCrossoverPointProbability";
private const string WindowingParameterName = "Windowing";
private const string ProportionalSamplingParameterName = "ProportionalSampling";
private const string StrictHashingParameterName = "StrictHashing";
private static readonly Func hashFunction = HashUtil.DJBHash;
#region Parameter Properties
public IValueLookupParameter InternalCrossoverPointProbabilityParameter {
get { return (IValueLookupParameter)Parameters[InternalCrossoverPointProbabilityParameterName]; }
}
public IValueLookupParameter WindowingParameter {
get { return (IValueLookupParameter)Parameters[WindowingParameterName]; }
}
public IValueLookupParameter ProportionalSamplingParameter {
get { return (IValueLookupParameter)Parameters[ProportionalSamplingParameterName]; }
}
public IFixedValueParameter StrictHashingParameter {
get { return (IFixedValueParameter)Parameters[StrictHashingParameterName]; }
}
#endregion
#region Properties
public PercentValue InternalCrossoverPointProbability {
get { return InternalCrossoverPointProbabilityParameter.ActualValue; }
}
public BoolValue Windowing {
get { return WindowingParameter.ActualValue; }
}
public BoolValue ProportionalSampling {
get { return ProportionalSamplingParameter.ActualValue; }
}
bool StrictHashing {
get { return StrictHashingParameter.Value.Value; }
}
#endregion
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(StrictHashingParameterName)) {
Parameters.Add(new FixedValueParameter(StrictHashingParameterName, "Use strict hashing when calculating subtree hash values."));
}
}
public SymbolicDataAnalysisExpressionDiversityPreservingCrossover() : base() {
Parameters.Add(new ValueLookupParameter(InternalCrossoverPointProbabilityParameterName, "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9)));
Parameters.Add(new ValueLookupParameter(WindowingParameterName, "Use proportional sampling with windowing for cutpoint selection.", new BoolValue(false)));
Parameters.Add(new ValueLookupParameter(ProportionalSamplingParameterName, "Select cutpoints proportionally using probabilities as weights instead of randomly.", new BoolValue(true)));
Parameters.Add(new FixedValueParameter(StrictHashingParameterName, "Use strict hashing when calculating subtree hash values."));
}
private SymbolicDataAnalysisExpressionDiversityPreservingCrossover(SymbolicDataAnalysisExpressionDiversityPreservingCrossover original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicDataAnalysisExpressionDiversityPreservingCrossover(this, cloner);
}
[StorableConstructor]
private SymbolicDataAnalysisExpressionDiversityPreservingCrossover(StorableConstructorFlag _) : base(_) { }
private static ISymbolicExpressionTreeNode ActualRoot(ISymbolicExpressionTree tree) {
return tree.Root.GetSubtree(0).GetSubtree(0);
}
public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, double internalCrossoverPointProbability, int maxLength, int maxDepth, bool windowing, bool proportionalSampling = false, bool strictHashing = false) {
var nodes0 = ActualRoot(parent0).MakeNodes(strictHashing).Sort(hashFunction);
var nodes1 = ActualRoot(parent1).MakeNodes(strictHashing).Sort(hashFunction);
IList> sampled0;
IList> sampled1;
if (proportionalSampling) {
var p = internalCrossoverPointProbability;
var weights0 = nodes0.Select(x => x.IsLeaf ? 1 - p : p);
sampled0 = nodes0.SampleProportionalWithoutRepetition(random, nodes0.Length, weights0, windowing: windowing).ToArray();
var weights1 = nodes1.Select(x => x.IsLeaf ? 1 - p : p);
sampled1 = nodes1.SampleProportionalWithoutRepetition(random, nodes1.Length, weights1, windowing: windowing).ToArray();
} else {
sampled0 = ChooseNodes(random, nodes0, internalCrossoverPointProbability).ShuffleInPlace(random);
sampled1 = ChooseNodes(random, nodes1, internalCrossoverPointProbability).ShuffleInPlace(random);
}
foreach (var selected in sampled0) {
var cutpoint = new CutPoint(selected.Data.Parent, selected.Data);
var maxAllowedDepth = maxDepth - parent0.Root.GetBranchLevel(selected.Data);
var maxAllowedLength = maxLength - (parent0.Length - selected.Data.GetLength());
foreach (var candidate in sampled1) {
if (candidate.CalculatedHashValue == selected.CalculatedHashValue
|| candidate.Data.GetDepth() > maxAllowedDepth
|| candidate.Data.GetLength() > maxAllowedLength
|| !cutpoint.IsMatchingPointType(candidate.Data)) {
continue;
}
Swap(cutpoint, candidate.Data);
return parent0;
}
}
return parent0;
}
public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
if (this.ExecutionContext == null) {
throw new InvalidOperationException("ExecutionContext not set.");
}
var maxDepth = MaximumSymbolicExpressionTreeDepth.Value;
var maxLength = MaximumSymbolicExpressionTreeLength.Value;
var internalCrossoverPointProbability = InternalCrossoverPointProbability.Value;
var windowing = Windowing.Value;
var proportionalSampling = ProportionalSampling.Value;
return Cross(random, parent0, parent1, internalCrossoverPointProbability, maxLength, maxDepth, windowing, proportionalSampling, StrictHashing);
}
private static List> ChooseNodes(IRandom random, IEnumerable> nodes, double internalCrossoverPointProbability) {
var list = new List>();
var chooseInternal = random.NextDouble() < internalCrossoverPointProbability;
if (chooseInternal) {
list.AddRange(nodes.Where(x => !x.IsLeaf && x.Data.Parent != null));
}
if (!chooseInternal || list.Count == 0) {
list.AddRange(nodes.Where(x => x.IsLeaf && x.Data.Parent != null));
}
return list;
}
}
}