[7476] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7476] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[7481] | 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[7476] | 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
[7497] | 31 | [Item("DeterministicBestCrossover", "An operator which performs subtree swapping by choosing the best subtree to be swapped in a certain position:\n" +
|
---|
| 32 | "- Take two parent individuals P0 and P1\n" +
|
---|
| 33 | "- Randomly choose a crossover point C from P0\n" +
|
---|
| 34 | "- Test all nodes from P1 to determine the one that produces the best child when inserted at place C in P0")]
|
---|
[7476] | 35 | public sealed class SymbolicDataAnalysisExpressionDeterministicBestCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData {
|
---|
| 36 | [StorableConstructor]
|
---|
| 37 | private SymbolicDataAnalysisExpressionDeterministicBestCrossover(bool deserializing) : base(deserializing) { }
|
---|
| 38 | private SymbolicDataAnalysisExpressionDeterministicBestCrossover(SymbolicDataAnalysisExpressionCrossover<T> original, Cloner cloner)
|
---|
| 39 | : base(original, cloner) {
|
---|
| 40 | }
|
---|
| 41 | public SymbolicDataAnalysisExpressionDeterministicBestCrossover()
|
---|
| 42 | : base() {
|
---|
[7521] | 43 | name = "DeterministicBestCrossover";
|
---|
[7476] | 44 | }
|
---|
| 45 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 46 | return new SymbolicDataAnalysisExpressionDeterministicBestCrossover<T>(this, cloner);
|
---|
| 47 | }
|
---|
[7481] | 48 | public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
|
---|
[7476] | 49 | if (this.ExecutionContext == null)
|
---|
| 50 | throw new InvalidOperationException("ExecutionContext not set.");
|
---|
| 51 | List<int> rows = GenerateRowsToEvaluate().ToList();
|
---|
| 52 | T problemData = ProblemDataParameter.ActualValue;
|
---|
| 53 | ISymbolicDataAnalysisSingleObjectiveEvaluator<T> evaluator = EvaluatorParameter.ActualValue;
|
---|
| 54 |
|
---|
| 55 | return Cross(random, parent0, parent1, this.ExecutionContext, evaluator, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | /// <summary>
|
---|
| 59 | /// Takes two parent individuals P0 and P1.
|
---|
| 60 | /// Randomly choose a node i from the first parent, then test all nodes j from the second parent to determine the best child that would be obtained by swapping i for j.
|
---|
| 61 | /// </summary>
|
---|
| 62 | public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, IExecutionContext context,
|
---|
| 63 | ISymbolicDataAnalysisSingleObjectiveEvaluator<T> evaluator, T problemData, List<int> rows, int maxDepth, int maxLength) {
|
---|
| 64 | var crossoverPoints0 = new List<CutPoint>();
|
---|
| 65 | parent0.Root.ForEachNodePostfix((n) => {
|
---|
[7497] | 66 | if (n.Parent != null && n.Parent != parent0.Root)
|
---|
| 67 | crossoverPoints0.Add(new CutPoint(n.Parent, n));
|
---|
[7476] | 68 | });
|
---|
| 69 | CutPoint crossoverPoint0 = crossoverPoints0.SelectRandom(random);
|
---|
| 70 | int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
|
---|
| 71 | int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();
|
---|
| 72 |
|
---|
| 73 | var allowedBranches = new List<ISymbolicExpressionTreeNode>();
|
---|
| 74 | parent1.Root.ForEachNodePostfix((n) => {
|
---|
[7497] | 75 | if (n.Parent != null && n.Parent != parent1.Root) {
|
---|
| 76 | if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n))
|
---|
| 77 | allowedBranches.Add(n);
|
---|
| 78 | }
|
---|
[7476] | 79 | });
|
---|
| 80 |
|
---|
| 81 | if (allowedBranches.Count == 0)
|
---|
| 82 | return parent0;
|
---|
| 83 |
|
---|
| 84 | // create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
|
---|
| 85 | ISymbolicExpressionTreeNode selectedBranch = null;
|
---|
| 86 | var nodeQualities = new List<Tuple<ISymbolicExpressionTreeNode, double>>();
|
---|
| 87 | var originalChild = crossoverPoint0.Child;
|
---|
| 88 |
|
---|
| 89 | foreach (var node in allowedBranches) {
|
---|
| 90 | var parent = node.Parent;
|
---|
[7497] | 91 | Swap(crossoverPoint0, node); // the swap will set the nodes parent to crossoverPoint0.Parent
|
---|
[7506] | 92 | IExecutionContext childContext = new ExecutionContext(context, evaluator, context.Scope);
|
---|
| 93 | double quality = evaluator.Evaluate(childContext, parent0, problemData, rows);
|
---|
[7497] | 94 | Swap(crossoverPoint0, originalChild); // swap the child back (so that the next swap will not affect the currently swapped node from parent1)
|
---|
[7476] | 95 | nodeQualities.Add(new Tuple<ISymbolicExpressionTreeNode, double>(node, quality));
|
---|
| 96 | node.Parent = parent; // restore correct parent
|
---|
| 97 | }
|
---|
| 98 |
|
---|
[7506] | 99 | nodeQualities.Sort((a, b) => a.Item2.CompareTo(b.Item2));
|
---|
[7476] | 100 | selectedBranch = evaluator.Maximization ? nodeQualities.Last().Item1 : nodeQualities.First().Item1;
|
---|
| 101 |
|
---|
| 102 | // swap the node that would create the best offspring
|
---|
[7497] | 103 | Swap(crossoverPoint0, selectedBranch);
|
---|
[7476] | 104 | return parent0;
|
---|
| 105 | }
|
---|
| 106 | }
|
---|
| 107 | }
|
---|