#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { /// /// An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems. /// [Item("SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems.")] [StorableClass] public abstract class SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveAnalyzer where T : class, ISymbolicDataAnalysisSolution { private const string TrainingBestSolutionsParameterName = "Best training solutions"; private const string TrainingBestSolutionQualitiesParameterName = "Best training solution qualities"; private const string UpdateAlwaysParameterName = "Always update best solutions"; #region parameter properties public ILookupParameter> TrainingBestSolutionsParameter { get { return (ILookupParameter>)Parameters[TrainingBestSolutionsParameterName]; } } public ILookupParameter> TrainingBestSolutionQualitiesParameter { get { return (ILookupParameter>)Parameters[TrainingBestSolutionQualitiesParameterName]; } } public IFixedValueParameter UpdateAlwaysParameter { get { return (IFixedValueParameter)Parameters[UpdateAlwaysParameterName]; } } #endregion #region properties public ItemList TrainingBestSolutions { get { return TrainingBestSolutionsParameter.ActualValue; } set { TrainingBestSolutionsParameter.ActualValue = value; } } public ItemList TrainingBestSolutionQualities { get { return TrainingBestSolutionQualitiesParameter.ActualValue; } set { TrainingBestSolutionQualitiesParameter.ActualValue = value; } } public BoolValue UpdateAlways { get { return UpdateAlwaysParameter.Value; } } #endregion [StorableConstructor] protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { } protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { } public SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer() : base() { Parameters.Add(new LookupParameter>(TrainingBestSolutionsParameterName, "The training best (Pareto-optimal) symbolic data analysis solutions.")); Parameters.Add(new LookupParameter>(TrainingBestSolutionQualitiesParameterName, "The qualities of the training best (Pareto-optimal) solutions.")); Parameters.Add(new FixedValueParameter(UpdateAlwaysParameterName, "Determines if the best training solutions should always be updated regardless of its quality.", new BoolValue(false))); UpdateAlwaysParameter.Hidden = true; } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(UpdateAlwaysParameterName)) { Parameters.Add(new FixedValueParameter(UpdateAlwaysParameterName, "Determines if the best training solutions should always be updated regardless of its quality.", new BoolValue(false))); UpdateAlwaysParameter.Hidden = true; } } public override IOperation Apply() { var results = ResultCollection; // create empty parameter and result values if (TrainingBestSolutions == null) { TrainingBestSolutions = new ItemList(); TrainingBestSolutionQualities = new ItemList(); results.Add(new Result(TrainingBestSolutionQualitiesParameter.Name, TrainingBestSolutionQualitiesParameter.Description, TrainingBestSolutionQualities)); results.Add(new Result(TrainingBestSolutionsParameter.Name, TrainingBestSolutionsParameter.Description, TrainingBestSolutions)); } //if the pareto front of best solutions shall be updated regardless of the quality, the list initialized empty to discard old solutions IList trainingBestQualities; if (UpdateAlways.Value) { trainingBestQualities = new List(); } else { trainingBestQualities = TrainingBestSolutionQualities.Select(x => x.ToArray()).ToList(); } #region find best trees IList nonDominatedIndexes = new List(); ISymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray(); List qualities = Qualities.Select(x => x.ToArray()).ToList(); bool[] maximization = Maximization.ToArray(); List newNonDominatedQualities = new List(); for (int i = 0; i < tree.Length; i++) { if (IsNonDominated(qualities[i], trainingBestQualities, maximization) && IsNonDominated(qualities[i], qualities, maximization)) { if (!newNonDominatedQualities.Contains(qualities[i], new DoubleArrayComparer())) { newNonDominatedQualities.Add(qualities[i]); nonDominatedIndexes.Add(i); } } } #endregion #region update Pareto-optimal solution archive if (nonDominatedIndexes.Count > 0) { ItemList nonDominatedQualities = new ItemList(); ItemList nonDominatedSolutions = new ItemList(); // add all new non-dominated solutions to the archive foreach (var index in nonDominatedIndexes) { T solution = CreateSolution(tree[index], qualities[index]); nonDominatedSolutions.Add(solution); nonDominatedQualities.Add(new DoubleArray(qualities[index])); } // add old non-dominated solutions only if they are not dominated by one of the new solutions for (int i = 0; i < trainingBestQualities.Count; i++) { if (IsNonDominated(trainingBestQualities[i], newNonDominatedQualities, maximization)) { if (!newNonDominatedQualities.Contains(trainingBestQualities[i], new DoubleArrayComparer())) { nonDominatedSolutions.Add(TrainingBestSolutions[i]); nonDominatedQualities.Add(TrainingBestSolutionQualities[i]); } } } results[TrainingBestSolutionsParameter.Name].Value = nonDominatedSolutions; results[TrainingBestSolutionQualitiesParameter.Name].Value = nonDominatedQualities; } #endregion return base.Apply(); } private class DoubleArrayComparer : IEqualityComparer { public bool Equals(double[] x, double[] y) { if (y.Length != x.Length) throw new ArgumentException(); for (int i = 0; i < x.Length; i++) { if (!x[i].IsAlmost(y[i])) return false; } return true; } public int GetHashCode(double[] obj) { int c = obj.Length; for (int i = 0; i < obj.Length; i++) c ^= obj[i].GetHashCode(); return c; } } protected abstract T CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality); private bool IsNonDominated(double[] point, IList points, bool[] maximization) { foreach (var refPoint in points) { bool refPointDominatesPoint = true; for (int i = 0; i < point.Length; i++) { refPointDominatesPoint &= IsBetterOrEqual(refPoint[i], point[i], maximization[i]); } if (refPointDominatesPoint) return false; } return true; } private bool IsBetterOrEqual(double lhs, double rhs, bool maximization) { if (maximization) return lhs > rhs; else return lhs < rhs; } } }