#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
///
/// Represents a symbolic regression model
///
[StorableClass]
[Item(Name = "Symbolic Regression Model", Description = "Represents a symbolic regression model.")]
public class SymbolicRegressionModel : SymbolicDataAnalysisModel, ISymbolicRegressionModel {
[StorableConstructor]
protected SymbolicRegressionModel(bool deserializing) : base(deserializing) { }
protected SymbolicRegressionModel(SymbolicRegressionModel original, Cloner cloner) : base(original, cloner) { }
public SymbolicRegressionModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
: base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionModel(this, cloner);
}
public IEnumerable GetEstimatedValues(Dataset dataset, IEnumerable rows) {
return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows)
.LimitToRange(LowerEstimationLimit, UpperEstimationLimit);
}
public ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
return new SymbolicRegressionSolution(this, new RegressionProblemData(problemData));
}
IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
return CreateRegressionSolution(problemData);
}
public void Scale(IRegressionProblemData problemData) {
Scale(problemData, problemData.TargetVariable);
}
}
}