#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { [Item("Constant Optimization Evaluator", "Calculates Pearson Rē of a symbolic regression solution and optimizes the constant used.")] [StorableClass] public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator { private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations"; private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement"; private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability"; private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage"; private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree"; private const string UpdateVariableWeightsParameterName = "Update Variable Weights"; private const string FunctionEvaluationsResultParameterName = "Constants Optimization Function Evaluations"; private const string GradientEvaluationsResultParameterName = "Constants Optimization Gradient Evaluations"; private const string CountEvaluationsParameterName = "Count Function and Gradient Evaluations"; public IFixedValueParameter ConstantOptimizationIterationsParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationIterationsParameterName]; } } public IFixedValueParameter ConstantOptimizationImprovementParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationImprovementParameterName]; } } public IFixedValueParameter ConstantOptimizationProbabilityParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationProbabilityParameterName]; } } public IFixedValueParameter ConstantOptimizationRowsPercentageParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationRowsPercentageParameterName]; } } public IFixedValueParameter UpdateConstantsInTreeParameter { get { return (IFixedValueParameter)Parameters[UpdateConstantsInTreeParameterName]; } } public IFixedValueParameter UpdateVariableWeightsParameter { get { return (IFixedValueParameter)Parameters[UpdateVariableWeightsParameterName]; } } public IResultParameter FunctionEvaluationsResultParameter { get { return (IResultParameter)Parameters[FunctionEvaluationsResultParameterName]; } } public IResultParameter GradientEvaluationsResultParameter { get { return (IResultParameter)Parameters[GradientEvaluationsResultParameterName]; } } public IFixedValueParameter CountEvaluationsParameter { get { return (IFixedValueParameter)Parameters[CountEvaluationsParameterName]; } } public IntValue ConstantOptimizationIterations { get { return ConstantOptimizationIterationsParameter.Value; } } public DoubleValue ConstantOptimizationImprovement { get { return ConstantOptimizationImprovementParameter.Value; } } public PercentValue ConstantOptimizationProbability { get { return ConstantOptimizationProbabilityParameter.Value; } } public PercentValue ConstantOptimizationRowsPercentage { get { return ConstantOptimizationRowsPercentageParameter.Value; } } public bool UpdateConstantsInTree { get { return UpdateConstantsInTreeParameter.Value.Value; } set { UpdateConstantsInTreeParameter.Value.Value = value; } } public bool UpdateVariableWeights { get { return UpdateVariableWeightsParameter.Value.Value; } set { UpdateVariableWeightsParameter.Value.Value = value; } } public bool CountEvaluations { get { return CountEvaluationsParameter.Value.Value; } set { CountEvaluationsParameter.Value.Value = value; } } public override bool Maximization { get { return true; } } [StorableConstructor] protected SymbolicRegressionConstantOptimizationEvaluator(bool deserializing) : base(deserializing) { } protected SymbolicRegressionConstantOptimizationEvaluator(SymbolicRegressionConstantOptimizationEvaluator original, Cloner cloner) : base(original, cloner) { } public SymbolicRegressionConstantOptimizationEvaluator() : base() { Parameters.Add(new FixedValueParameter(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10), true)); Parameters.Add(new FixedValueParameter(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true) { Hidden = true }); Parameters.Add(new FixedValueParameter(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true)); Parameters.Add(new FixedValueParameter(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true)); Parameters.Add(new FixedValueParameter(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true }); Parameters.Add(new FixedValueParameter(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true)) { Hidden = true }); Parameters.Add(new FixedValueParameter(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false))); Parameters.Add(new ResultParameter(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the constants optimization evaluator", "Results", new IntValue())); Parameters.Add(new ResultParameter(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the constants optimization evaluator", "Results", new IntValue())); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionConstantOptimizationEvaluator(this, cloner); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(UpdateConstantsInTreeParameterName)) Parameters.Add(new FixedValueParameter(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true))); if (!Parameters.ContainsKey(UpdateVariableWeightsParameterName)) Parameters.Add(new FixedValueParameter(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true))); if (!Parameters.ContainsKey(CountEvaluationsParameterName)) Parameters.Add(new FixedValueParameter(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false))); if (Parameters.ContainsKey(FunctionEvaluationsResultParameterName) && Parameters.ContainsKey(GradientEvaluationsResultParameterName)) CountEvaluations = true; if (!Parameters.ContainsKey(FunctionEvaluationsResultParameterName)) Parameters.Add(new ResultParameter(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the constants optimization evaluator", "Results", new IntValue())); if (!Parameters.ContainsKey(GradientEvaluationsResultParameterName)) Parameters.Add(new ResultParameter(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the constants optimization evaluator", "Results", new IntValue())); } private static readonly object locker = new object(); public override IOperation InstrumentedApply() { var solution = SymbolicExpressionTreeParameter.ActualValue; double quality; if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) { IEnumerable constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value); var counter = new EvaluationsCounter(); quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue, constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree, counter: counter); if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) { var evaluationRows = GenerateRowsToEvaluate(); quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value); } if (CountEvaluations) { lock (locker) { FunctionEvaluationsResultParameter.ActualValue.Value += counter.FunctionEvaluations; GradientEvaluationsResultParameter.ActualValue.Value += counter.GradientEvaluations; } } } else { var evaluationRows = GenerateRowsToEvaluate(); quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value); } QualityParameter.ActualValue = new DoubleValue(quality); return base.InstrumentedApply(); } public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows) { SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context; EstimationLimitsParameter.ExecutionContext = context; ApplyLinearScalingParameter.ExecutionContext = context; FunctionEvaluationsResultParameter.ExecutionContext = context; GradientEvaluationsResultParameter.ExecutionContext = context; // Pearson Rē evaluator is used on purpose instead of the const-opt evaluator, // because Evaluate() is used to get the quality of evolved models on // different partitions of the dataset (e.g., best validation model) double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value); SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null; EstimationLimitsParameter.ExecutionContext = null; ApplyLinearScalingParameter.ExecutionContext = null; FunctionEvaluationsResultParameter.ExecutionContext = null; GradientEvaluationsResultParameter.ExecutionContext = null; return r2; } public class EvaluationsCounter { public int FunctionEvaluations = 0; public int GradientEvaluations = 0; } public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows, bool applyLinearScaling, int maxIterations, bool updateVariableWeights = true, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue, bool updateConstantsInTree = true, Action iterationCallback = null, EvaluationsCounter counter = null) { // numeric constants in the tree become variables for constant opt // variables in the tree become parameters (fixed values) for constant opt // for each parameter (variable in the original tree) we store the // variable name, variable value (for factor vars) and lag as a DataForVariable object. // A dictionary is used to find parameters double[] initialConstants; var parameters = new List(); TreeToAutoDiffTermConverter.ParametricFunction func; TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad; if (!TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, updateVariableWeights, applyLinearScaling, out parameters, out initialConstants, out func, out func_grad)) throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree."); if (parameters.Count == 0) return 0.0; // gkronber: constant expressions always have a Rē of 0.0 var parameterEntries = parameters.ToArray(); // order of entries must be the same for x //extract inital constants double[] c; if (applyLinearScaling) { c = new double[initialConstants.Length + 2]; c[0] = 0.0; c[1] = 1.0; Array.Copy(initialConstants, 0, c, 2, initialConstants.Length); } else { c = (double[])initialConstants.Clone(); } double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); if (counter == null) counter = new EvaluationsCounter(); var rowEvaluationsCounter = new EvaluationsCounter(); alglib.lsfitstate state; alglib.lsfitreport rep; int retVal; IDataset ds = problemData.Dataset; double[,] x = new double[rows.Count(), parameters.Count]; int row = 0; foreach (var r in rows) { int col = 0; foreach (var info in parameterEntries) { if (ds.VariableHasType(info.variableName)) { x[row, col] = ds.GetDoubleValue(info.variableName, r + info.lag); } else if (ds.VariableHasType(info.variableName)) { x[row, col] = ds.GetStringValue(info.variableName, r) == info.variableValue ? 1 : 0; } else throw new InvalidProgramException("found a variable of unknown type"); col++; } row++; } double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray(); int n = x.GetLength(0); int m = x.GetLength(1); int k = c.Length; alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(func); alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(func_grad); alglib.ndimensional_rep xrep = (p, f, obj) => iterationCallback(p, f, obj); try { alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state); alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations); alglib.lsfitsetxrep(state, iterationCallback != null); //alglib.lsfitsetgradientcheck(state, 0.001); alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, xrep, rowEvaluationsCounter); alglib.lsfitresults(state, out retVal, out c, out rep); } catch (ArithmeticException) { return originalQuality; } catch (alglib.alglibexception) { return originalQuality; } counter.FunctionEvaluations += rowEvaluationsCounter.FunctionEvaluations / n; counter.GradientEvaluations += rowEvaluationsCounter.GradientEvaluations / n; //retVal == -7 => constant optimization failed due to wrong gradient if (retVal != -7) { if (applyLinearScaling) { var tmp = new double[c.Length - 2]; Array.Copy(c, 2, tmp, 0, tmp.Length); UpdateConstants(tree, tmp, updateVariableWeights); } else UpdateConstants(tree, c, updateVariableWeights); } var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); if (!updateConstantsInTree) UpdateConstants(tree, initialConstants, updateVariableWeights); if (originalQuality - quality > 0.001 || double.IsNaN(quality)) { UpdateConstants(tree, initialConstants, updateVariableWeights); return originalQuality; } return quality; } private static void UpdateConstants(ISymbolicExpressionTree tree, double[] constants, bool updateVariableWeights) { int i = 0; foreach (var node in tree.Root.IterateNodesPrefix().OfType()) { ConstantTreeNode constantTreeNode = node as ConstantTreeNode; VariableTreeNodeBase variableTreeNodeBase = node as VariableTreeNodeBase; FactorVariableTreeNode factorVarTreeNode = node as FactorVariableTreeNode; if (constantTreeNode != null) constantTreeNode.Value = constants[i++]; else if (updateVariableWeights && variableTreeNodeBase != null) variableTreeNodeBase.Weight = constants[i++]; else if (factorVarTreeNode != null) { for (int j = 0; j < factorVarTreeNode.Weights.Length; j++) factorVarTreeNode.Weights[j] = constants[i++]; } } } private static alglib.ndimensional_pfunc CreatePFunc(TreeToAutoDiffTermConverter.ParametricFunction func) { return (double[] c, double[] x, ref double fx, object o) => { fx = func(c, x); var counter = (EvaluationsCounter)o; counter.FunctionEvaluations++; }; } private static alglib.ndimensional_pgrad CreatePGrad(TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad) { return (double[] c, double[] x, ref double fx, double[] grad, object o) => { var tuple = func_grad(c, x); fx = tuple.Item2; Array.Copy(tuple.Item1, grad, grad.Length); var counter = (EvaluationsCounter)o; counter.GradientEvaluations++; }; } public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) { return TreeToAutoDiffTermConverter.IsCompatible(tree); } } }