#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using AutoDiff;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
[Item("Constant Optimization Evaluator", "Calculates Pearson Rē of a symbolic regression solution and optimizes the constant used.")]
[StorableClass]
public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree";
public IFixedValueParameter ConstantOptimizationIterationsParameter {
get { return (IFixedValueParameter)Parameters[ConstantOptimizationIterationsParameterName]; }
}
public IFixedValueParameter ConstantOptimizationImprovementParameter {
get { return (IFixedValueParameter)Parameters[ConstantOptimizationImprovementParameterName]; }
}
public IFixedValueParameter ConstantOptimizationProbabilityParameter {
get { return (IFixedValueParameter)Parameters[ConstantOptimizationProbabilityParameterName]; }
}
public IFixedValueParameter ConstantOptimizationRowsPercentageParameter {
get { return (IFixedValueParameter)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
}
public IFixedValueParameter UpdateConstantsInTreeParameter {
get { return (IFixedValueParameter)Parameters[UpdateConstantsInTreeParameterName]; }
}
public IntValue ConstantOptimizationIterations {
get { return ConstantOptimizationIterationsParameter.Value; }
}
public DoubleValue ConstantOptimizationImprovement {
get { return ConstantOptimizationImprovementParameter.Value; }
}
public PercentValue ConstantOptimizationProbability {
get { return ConstantOptimizationProbabilityParameter.Value; }
}
public PercentValue ConstantOptimizationRowsPercentage {
get { return ConstantOptimizationRowsPercentageParameter.Value; }
}
public bool UpdateConstantsInTree {
get { return UpdateConstantsInTreeParameter.Value.Value; }
set { UpdateConstantsInTreeParameter.Value.Value = value; }
}
public override bool Maximization {
get { return true; }
}
[StorableConstructor]
protected SymbolicRegressionConstantOptimizationEvaluator(bool deserializing) : base(deserializing) { }
protected SymbolicRegressionConstantOptimizationEvaluator(SymbolicRegressionConstantOptimizationEvaluator original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicRegressionConstantOptimizationEvaluator()
: base() {
Parameters.Add(new FixedValueParameter(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10), true));
Parameters.Add(new FixedValueParameter(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true));
Parameters.Add(new FixedValueParameter(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true));
Parameters.Add(new FixedValueParameter(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true));
Parameters.Add(new FixedValueParameter(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionConstantOptimizationEvaluator(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(UpdateConstantsInTreeParameterName))
Parameters.Add(new FixedValueParameter(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)));
}
public override IOperation InstrumentedApply() {
var solution = SymbolicExpressionTreeParameter.ActualValue;
double quality;
if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
IEnumerable constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ConstantOptimizationIterations.Value,
EstimationLimitsParameter.ActualValue.Upper, EstimationLimitsParameter.ActualValue.Lower, UpdateConstantsInTree);
if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
var evaluationRows = GenerateRowsToEvaluate();
quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
}
} else {
var evaluationRows = GenerateRowsToEvaluate();
quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
}
QualityParameter.ActualValue = new DoubleValue(quality);
return base.InstrumentedApply();
}
public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows) {
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
EstimationLimitsParameter.ExecutionContext = context;
ApplyLinearScalingParameter.ExecutionContext = context;
// Pearson Rē evaluator is used on purpose instead of the const-opt evaluator,
// because Evaluate() is used to get the quality of evolved models on
// different partitions of the dataset (e.g., best validation model)
double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
EstimationLimitsParameter.ExecutionContext = null;
ApplyLinearScalingParameter.ExecutionContext = null;
return r2;
}
#region derivations of functions
// create function factory for arctangent
private readonly Func arctan = UnaryFunc.Factory(
eval: Math.Atan,
diff: x => 1 / (1 + x * x));
private static readonly Func sin = UnaryFunc.Factory(
eval: Math.Sin,
diff: Math.Cos);
private static readonly Func cos = UnaryFunc.Factory(
eval: Math.Cos,
diff: x => -Math.Sin(x));
private static readonly Func tan = UnaryFunc.Factory(
eval: Math.Tan,
diff: x => 1 + Math.Tan(x) * Math.Tan(x));
private static readonly Func square = UnaryFunc.Factory(
eval: x => x * x,
diff: x => 2 * x);
private static readonly Func erf = UnaryFunc.Factory(
eval: alglib.errorfunction,
diff: x => 2.0 * Math.Exp(-(x * x)) / Math.Sqrt(Math.PI));
private static readonly Func norm = UnaryFunc.Factory(
eval: alglib.normaldistribution,
diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI));
#endregion
public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData,
IEnumerable rows, bool applyLinearScaling, int maxIterations, double upperEstimationLimit = double.MaxValue, double lowerEstimationLimit = double.MinValue, bool updateConstantsInTree = true) {
List variables = new List();
List parameters = new List();
List variableNames = new List();
AutoDiff.Term func;
if (!TryTransformToAutoDiff(tree.Root.GetSubtree(0), variables, parameters, variableNames, out func))
throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree.");
if (variableNames.Count == 0) return 0.0;
AutoDiff.IParametricCompiledTerm compiledFunc = AutoDiff.TermUtils.Compile(func, variables.ToArray(), parameters.ToArray());
List terminalNodes = tree.Root.IterateNodesPrefix().OfType().ToList();
double[] c = new double[variables.Count];
{
c[0] = 0.0;
c[1] = 1.0;
//extract inital constants
int i = 2;
foreach (var node in terminalNodes) {
ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
VariableTreeNode variableTreeNode = node as VariableTreeNode;
if (constantTreeNode != null)
c[i++] = constantTreeNode.Value;
else if (variableTreeNode != null)
c[i++] = variableTreeNode.Weight;
}
}
double[] originalConstants = (double[])c.Clone();
double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
alglib.lsfitstate state;
alglib.lsfitreport rep;
int info;
Dataset ds = problemData.Dataset;
double[,] x = new double[rows.Count(), variableNames.Count];
int row = 0;
foreach (var r in rows) {
for (int col = 0; col < variableNames.Count; col++) {
x[row, col] = ds.GetDoubleValue(variableNames[col], r);
}
row++;
}
double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
int n = x.GetLength(0);
int m = x.GetLength(1);
int k = c.Length;
alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(compiledFunc);
alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(compiledFunc);
try {
alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state);
alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations);
//alglib.lsfitsetgradientcheck(state, 0.001);
alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, null, null);
alglib.lsfitresults(state, out info, out c, out rep);
}
catch (ArithmeticException) {
return originalQuality;
}
catch (alglib.alglibexception) {
return originalQuality;
}
//info == -7 => constant optimization failed due to wrong gradient
if (info != -7) UpdateConstants(tree, c.Skip(2).ToArray());
var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
if (!updateConstantsInTree) UpdateConstants(tree, originalConstants.Skip(2).ToArray());
if (originalQuality - quality > 0.001 || double.IsNaN(quality)) {
UpdateConstants(tree, originalConstants.Skip(2).ToArray());
return originalQuality;
}
return quality;
}
private static void UpdateConstants(ISymbolicExpressionTree tree, double[] constants) {
int i = 0;
foreach (var node in tree.Root.IterateNodesPrefix().OfType()) {
ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
VariableTreeNode variableTreeNode = node as VariableTreeNode;
if (constantTreeNode != null)
constantTreeNode.Value = constants[i++];
else if (variableTreeNode != null)
variableTreeNode.Weight = constants[i++];
}
}
private static alglib.ndimensional_pfunc CreatePFunc(AutoDiff.IParametricCompiledTerm compiledFunc) {
return (double[] c, double[] x, ref double func, object o) => {
func = compiledFunc.Evaluate(c, x);
};
}
private static alglib.ndimensional_pgrad CreatePGrad(AutoDiff.IParametricCompiledTerm compiledFunc) {
return (double[] c, double[] x, ref double func, double[] grad, object o) => {
var tupel = compiledFunc.Differentiate(c, x);
func = tupel.Item2;
Array.Copy(tupel.Item1, grad, grad.Length);
};
}
private static bool TryTransformToAutoDiff(ISymbolicExpressionTreeNode node, List variables, List parameters, List variableNames, out AutoDiff.Term term) {
if (node.Symbol is Constant) {
var var = new AutoDiff.Variable();
variables.Add(var);
term = var;
return true;
}
if (node.Symbol is Variable) {
var varNode = node as VariableTreeNode;
var par = new AutoDiff.Variable();
parameters.Add(par);
variableNames.Add(varNode.VariableName);
var w = new AutoDiff.Variable();
variables.Add(w);
term = AutoDiff.TermBuilder.Product(w, par);
return true;
}
if (node.Symbol is Addition) {
List terms = new List();
foreach (var subTree in node.Subtrees) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(subTree, variables, parameters, variableNames, out t)) {
term = null;
return false;
}
terms.Add(t);
}
term = AutoDiff.TermBuilder.Sum(terms);
return true;
}
if (node.Symbol is Subtraction) {
List terms = new List();
for (int i = 0; i < node.SubtreeCount; i++) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(node.GetSubtree(i), variables, parameters, variableNames, out t)) {
term = null;
return false;
}
if (i > 0) t = -t;
terms.Add(t);
}
term = AutoDiff.TermBuilder.Sum(terms);
return true;
}
if (node.Symbol is Multiplication) {
AutoDiff.Term a, b;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out a) ||
!TryTransformToAutoDiff(node.GetSubtree(1), variables, parameters, variableNames, out b)) {
term = null;
return false;
} else {
List factors = new List();
foreach (var subTree in node.Subtrees.Skip(2)) {
AutoDiff.Term f;
if (!TryTransformToAutoDiff(subTree, variables, parameters, variableNames, out f)) {
term = null;
return false;
}
factors.Add(f);
}
term = AutoDiff.TermBuilder.Product(a, b, factors.ToArray());
return true;
}
}
if (node.Symbol is Division) {
// only works for at least two subtrees
AutoDiff.Term a, b;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out a) ||
!TryTransformToAutoDiff(node.GetSubtree(1), variables, parameters, variableNames, out b)) {
term = null;
return false;
} else {
List factors = new List();
foreach (var subTree in node.Subtrees.Skip(2)) {
AutoDiff.Term f;
if (!TryTransformToAutoDiff(subTree, variables, parameters, variableNames, out f)) {
term = null;
return false;
}
factors.Add(1.0 / f);
}
term = AutoDiff.TermBuilder.Product(a, 1.0 / b, factors.ToArray());
return true;
}
}
if (node.Symbol is Logarithm) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
term = null;
return false;
} else {
term = AutoDiff.TermBuilder.Log(t);
return true;
}
}
if (node.Symbol is Exponential) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
term = null;
return false;
} else {
term = AutoDiff.TermBuilder.Exp(t);
return true;
}
} if (node.Symbol is Sine) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
term = null;
return false;
} else {
term = sin(t);
return true;
}
} if (node.Symbol is Cosine) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
term = null;
return false;
} else {
term = cos(t);
return true;
}
} if (node.Symbol is Tangent) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
term = null;
return false;
} else {
term = tan(t);
return true;
}
}
if (node.Symbol is Square) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
term = null;
return false;
} else {
term = square(t);
return true;
}
} if (node.Symbol is Erf) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
term = null;
return false;
} else {
term = erf(t);
return true;
}
} if (node.Symbol is Norm) {
AutoDiff.Term t;
if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
term = null;
return false;
} else {
term = norm(t);
return true;
}
}
if (node.Symbol is StartSymbol) {
var alpha = new AutoDiff.Variable();
var beta = new AutoDiff.Variable();
variables.Add(beta);
variables.Add(alpha);
AutoDiff.Term branchTerm;
if (TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out branchTerm)) {
term = branchTerm * alpha + beta;
return true;
} else {
term = null;
return false;
}
}
term = null;
return false;
}
public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) {
var containsUnknownSymbol = (
from n in tree.Root.GetSubtree(0).IterateNodesPrefix()
where
!(n.Symbol is Variable) &&
!(n.Symbol is Constant) &&
!(n.Symbol is Addition) &&
!(n.Symbol is Subtraction) &&
!(n.Symbol is Multiplication) &&
!(n.Symbol is Division) &&
!(n.Symbol is Logarithm) &&
!(n.Symbol is Exponential) &&
!(n.Symbol is Sine) &&
!(n.Symbol is Cosine) &&
!(n.Symbol is Tangent) &&
!(n.Symbol is Square) &&
!(n.Symbol is Erf) &&
!(n.Symbol is Norm) &&
!(n.Symbol is StartSymbol)
select n).
Any();
return !containsUnknownSymbol;
}
}
}