#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using AutoDiff; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { [Item("Constant Optimization Evaluator", "Calculates Pearson Rē of a symbolic regression solution and optimizes the constant used.")] [StorableClass] public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator { private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations"; private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement"; private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability"; private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage"; private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree"; public IFixedValueParameter ConstantOptimizationIterationsParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationIterationsParameterName]; } } public IFixedValueParameter ConstantOptimizationImprovementParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationImprovementParameterName]; } } public IFixedValueParameter ConstantOptimizationProbabilityParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationProbabilityParameterName]; } } public IFixedValueParameter ConstantOptimizationRowsPercentageParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationRowsPercentageParameterName]; } } public IFixedValueParameter UpdateConstantsInTreeParameter { get { return (IFixedValueParameter)Parameters[UpdateConstantsInTreeParameterName]; } } public IntValue ConstantOptimizationIterations { get { return ConstantOptimizationIterationsParameter.Value; } } public DoubleValue ConstantOptimizationImprovement { get { return ConstantOptimizationImprovementParameter.Value; } } public PercentValue ConstantOptimizationProbability { get { return ConstantOptimizationProbabilityParameter.Value; } } public PercentValue ConstantOptimizationRowsPercentage { get { return ConstantOptimizationRowsPercentageParameter.Value; } } public bool UpdateConstantsInTree { get { return UpdateConstantsInTreeParameter.Value.Value; } set { UpdateConstantsInTreeParameter.Value.Value = value; } } public override bool Maximization { get { return true; } } [StorableConstructor] protected SymbolicRegressionConstantOptimizationEvaluator(bool deserializing) : base(deserializing) { } protected SymbolicRegressionConstantOptimizationEvaluator(SymbolicRegressionConstantOptimizationEvaluator original, Cloner cloner) : base(original, cloner) { } public SymbolicRegressionConstantOptimizationEvaluator() : base() { Parameters.Add(new FixedValueParameter(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10), true)); Parameters.Add(new FixedValueParameter(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true)); Parameters.Add(new FixedValueParameter(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true)); Parameters.Add(new FixedValueParameter(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true)); Parameters.Add(new FixedValueParameter(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true))); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionConstantOptimizationEvaluator(this, cloner); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(UpdateConstantsInTreeParameterName)) Parameters.Add(new FixedValueParameter(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true))); } public override IOperation InstrumentedApply() { var solution = SymbolicExpressionTreeParameter.ActualValue; double quality; if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) { IEnumerable constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value); quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue, constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ConstantOptimizationIterations.Value, EstimationLimitsParameter.ActualValue.Upper, EstimationLimitsParameter.ActualValue.Lower, UpdateConstantsInTree); if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) { var evaluationRows = GenerateRowsToEvaluate(); quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value); } } else { var evaluationRows = GenerateRowsToEvaluate(); quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value); } QualityParameter.ActualValue = new DoubleValue(quality); return base.InstrumentedApply(); } public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows) { SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context; EstimationLimitsParameter.ExecutionContext = context; ApplyLinearScalingParameter.ExecutionContext = context; // Pearson Rē evaluator is used on purpose instead of the const-opt evaluator, // because Evaluate() is used to get the quality of evolved models on // different partitions of the dataset (e.g., best validation model) double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value); SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null; EstimationLimitsParameter.ExecutionContext = null; ApplyLinearScalingParameter.ExecutionContext = null; return r2; } #region derivations of functions // create function factory for arctangent private readonly Func arctan = UnaryFunc.Factory( eval: Math.Atan, diff: x => 1 / (1 + x * x)); private static readonly Func sin = UnaryFunc.Factory( eval: Math.Sin, diff: Math.Cos); private static readonly Func cos = UnaryFunc.Factory( eval: Math.Cos, diff: x => -Math.Sin(x)); private static readonly Func tan = UnaryFunc.Factory( eval: Math.Tan, diff: x => 1 + Math.Tan(x) * Math.Tan(x)); private static readonly Func square = UnaryFunc.Factory( eval: x => x * x, diff: x => 2 * x); private static readonly Func erf = UnaryFunc.Factory( eval: alglib.errorfunction, diff: x => 2.0 * Math.Exp(-(x * x)) / Math.Sqrt(Math.PI)); private static readonly Func norm = UnaryFunc.Factory( eval: alglib.normaldistribution, diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI)); #endregion public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows, bool applyLinearScaling, int maxIterations, double upperEstimationLimit = double.MaxValue, double lowerEstimationLimit = double.MinValue, bool updateConstantsInTree = true) { List variables = new List(); List parameters = new List(); List variableNames = new List(); AutoDiff.Term func; if (!TryTransformToAutoDiff(tree.Root.GetSubtree(0), variables, parameters, variableNames, out func)) throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree."); if (variableNames.Count == 0) return 0.0; AutoDiff.IParametricCompiledTerm compiledFunc = AutoDiff.TermUtils.Compile(func, variables.ToArray(), parameters.ToArray()); List terminalNodes = tree.Root.IterateNodesPrefix().OfType().ToList(); double[] c = new double[variables.Count]; { c[0] = 0.0; c[1] = 1.0; //extract inital constants int i = 2; foreach (var node in terminalNodes) { ConstantTreeNode constantTreeNode = node as ConstantTreeNode; VariableTreeNode variableTreeNode = node as VariableTreeNode; if (constantTreeNode != null) c[i++] = constantTreeNode.Value; else if (variableTreeNode != null) c[i++] = variableTreeNode.Weight; } } double[] originalConstants = (double[])c.Clone(); double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); alglib.lsfitstate state; alglib.lsfitreport rep; int info; Dataset ds = problemData.Dataset; double[,] x = new double[rows.Count(), variableNames.Count]; int row = 0; foreach (var r in rows) { for (int col = 0; col < variableNames.Count; col++) { x[row, col] = ds.GetDoubleValue(variableNames[col], r); } row++; } double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray(); int n = x.GetLength(0); int m = x.GetLength(1); int k = c.Length; alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(compiledFunc); alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(compiledFunc); try { alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state); alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations); //alglib.lsfitsetgradientcheck(state, 0.001); alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, null, null); alglib.lsfitresults(state, out info, out c, out rep); } catch (ArithmeticException) { return originalQuality; } catch (alglib.alglibexception) { return originalQuality; } //info == -7 => constant optimization failed due to wrong gradient if (info != -7) UpdateConstants(tree, c.Skip(2).ToArray()); var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); if (!updateConstantsInTree) UpdateConstants(tree, originalConstants.Skip(2).ToArray()); if (originalQuality - quality > 0.001 || double.IsNaN(quality)) { UpdateConstants(tree, originalConstants.Skip(2).ToArray()); return originalQuality; } return quality; } private static void UpdateConstants(ISymbolicExpressionTree tree, double[] constants) { int i = 0; foreach (var node in tree.Root.IterateNodesPrefix().OfType()) { ConstantTreeNode constantTreeNode = node as ConstantTreeNode; VariableTreeNode variableTreeNode = node as VariableTreeNode; if (constantTreeNode != null) constantTreeNode.Value = constants[i++]; else if (variableTreeNode != null) variableTreeNode.Weight = constants[i++]; } } private static alglib.ndimensional_pfunc CreatePFunc(AutoDiff.IParametricCompiledTerm compiledFunc) { return (double[] c, double[] x, ref double func, object o) => { func = compiledFunc.Evaluate(c, x); }; } private static alglib.ndimensional_pgrad CreatePGrad(AutoDiff.IParametricCompiledTerm compiledFunc) { return (double[] c, double[] x, ref double func, double[] grad, object o) => { var tupel = compiledFunc.Differentiate(c, x); func = tupel.Item2; Array.Copy(tupel.Item1, grad, grad.Length); }; } private static bool TryTransformToAutoDiff(ISymbolicExpressionTreeNode node, List variables, List parameters, List variableNames, out AutoDiff.Term term) { if (node.Symbol is Constant) { var var = new AutoDiff.Variable(); variables.Add(var); term = var; return true; } if (node.Symbol is Variable) { var varNode = node as VariableTreeNode; var par = new AutoDiff.Variable(); parameters.Add(par); variableNames.Add(varNode.VariableName); var w = new AutoDiff.Variable(); variables.Add(w); term = AutoDiff.TermBuilder.Product(w, par); return true; } if (node.Symbol is Addition) { List terms = new List(); foreach (var subTree in node.Subtrees) { AutoDiff.Term t; if (!TryTransformToAutoDiff(subTree, variables, parameters, variableNames, out t)) { term = null; return false; } terms.Add(t); } term = AutoDiff.TermBuilder.Sum(terms); return true; } if (node.Symbol is Subtraction) { List terms = new List(); for (int i = 0; i < node.SubtreeCount; i++) { AutoDiff.Term t; if (!TryTransformToAutoDiff(node.GetSubtree(i), variables, parameters, variableNames, out t)) { term = null; return false; } if (i > 0) t = -t; terms.Add(t); } term = AutoDiff.TermBuilder.Sum(terms); return true; } if (node.Symbol is Multiplication) { AutoDiff.Term a, b; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out a) || !TryTransformToAutoDiff(node.GetSubtree(1), variables, parameters, variableNames, out b)) { term = null; return false; } else { List factors = new List(); foreach (var subTree in node.Subtrees.Skip(2)) { AutoDiff.Term f; if (!TryTransformToAutoDiff(subTree, variables, parameters, variableNames, out f)) { term = null; return false; } factors.Add(f); } term = AutoDiff.TermBuilder.Product(a, b, factors.ToArray()); return true; } } if (node.Symbol is Division) { // only works for at least two subtrees AutoDiff.Term a, b; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out a) || !TryTransformToAutoDiff(node.GetSubtree(1), variables, parameters, variableNames, out b)) { term = null; return false; } else { List factors = new List(); foreach (var subTree in node.Subtrees.Skip(2)) { AutoDiff.Term f; if (!TryTransformToAutoDiff(subTree, variables, parameters, variableNames, out f)) { term = null; return false; } factors.Add(1.0 / f); } term = AutoDiff.TermBuilder.Product(a, 1.0 / b, factors.ToArray()); return true; } } if (node.Symbol is Logarithm) { AutoDiff.Term t; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) { term = null; return false; } else { term = AutoDiff.TermBuilder.Log(t); return true; } } if (node.Symbol is Exponential) { AutoDiff.Term t; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) { term = null; return false; } else { term = AutoDiff.TermBuilder.Exp(t); return true; } } if (node.Symbol is Sine) { AutoDiff.Term t; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) { term = null; return false; } else { term = sin(t); return true; } } if (node.Symbol is Cosine) { AutoDiff.Term t; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) { term = null; return false; } else { term = cos(t); return true; } } if (node.Symbol is Tangent) { AutoDiff.Term t; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) { term = null; return false; } else { term = tan(t); return true; } } if (node.Symbol is Square) { AutoDiff.Term t; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) { term = null; return false; } else { term = square(t); return true; } } if (node.Symbol is Erf) { AutoDiff.Term t; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) { term = null; return false; } else { term = erf(t); return true; } } if (node.Symbol is Norm) { AutoDiff.Term t; if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) { term = null; return false; } else { term = norm(t); return true; } } if (node.Symbol is StartSymbol) { var alpha = new AutoDiff.Variable(); var beta = new AutoDiff.Variable(); variables.Add(beta); variables.Add(alpha); AutoDiff.Term branchTerm; if (TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out branchTerm)) { term = branchTerm * alpha + beta; return true; } else { term = null; return false; } } term = null; return false; } public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) { var containsUnknownSymbol = ( from n in tree.Root.GetSubtree(0).IterateNodesPrefix() where !(n.Symbol is Variable) && !(n.Symbol is Constant) && !(n.Symbol is Addition) && !(n.Symbol is Subtraction) && !(n.Symbol is Multiplication) && !(n.Symbol is Division) && !(n.Symbol is Logarithm) && !(n.Symbol is Exponential) && !(n.Symbol is Sine) && !(n.Symbol is Cosine) && !(n.Symbol is Tangent) && !(n.Symbol is Square) && !(n.Symbol is Erf) && !(n.Symbol is Norm) && !(n.Symbol is StartSymbol) select n). Any(); return !containsUnknownSymbol; } } }