#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
[Item("Pearson R² & Tree size Evaluator", "Calculates the Pearson R² and the tree size of a symbolic regression solution.")]
[StorableClass]
public class SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
[StorableConstructor]
protected SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator(bool deserializing) : base(deserializing) { }
protected SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator(SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator(this, cloner);
}
public SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator() : base() { }
public override IEnumerable Maximization { get { return new bool[2] { true, false }; } }
public override IOperation InstrumentedApply() {
IEnumerable rows = GenerateRowsToEvaluate();
var solution = SymbolicExpressionTreeParameter.ActualValue;
double[] qualities = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
QualitiesParameter.ActualValue = new DoubleArray(qualities);
return base.InstrumentedApply();
}
public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable rows, bool applyLinearScaling) {
IEnumerable estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
IEnumerable targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
OnlineCalculatorError errorState;
double r2;
if (applyLinearScaling) {
var r2Calculator = new OnlinePearsonsRSquaredCalculator();
CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, r2Calculator, problemData.Dataset.Rows);
errorState = r2Calculator.ErrorState;
r2 = r2Calculator.RSquared;
} else {
IEnumerable boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
r2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
}
if (errorState != OnlineCalculatorError.None) r2 = double.NaN;
return new double[2] { r2, solution.Length };
}
public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows) {
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
EstimationLimitsParameter.ExecutionContext = context;
ApplyLinearScalingParameter.ExecutionContext = context;
double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
EstimationLimitsParameter.ExecutionContext = null;
ApplyLinearScalingParameter.ExecutionContext = null;
return quality;
}
}
}