[5649] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5649] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[6233] | 22 | using System;
|
---|
[5649] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[17097] | 28 | using HEAL.Attic;
|
---|
[5649] | 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 31 | /// <summary>
|
---|
| 32 | /// Represents a symbolic classification model
|
---|
| 33 | /// </summary>
|
---|
[17097] | 34 | [StorableType("99332204-4097-496A-AB05-4DB9478DB159")]
|
---|
[5649] | 35 | [Item(Name = "SymbolicDiscriminantFunctionClassificationModel", Description = "Represents a symbolic classification model unsing a discriminant function.")]
|
---|
[8594] | 36 | public class SymbolicDiscriminantFunctionClassificationModel : SymbolicClassificationModel, ISymbolicDiscriminantFunctionClassificationModel {
|
---|
[5649] | 37 |
|
---|
| 38 | [Storable]
|
---|
| 39 | private double[] thresholds;
|
---|
| 40 | public IEnumerable<double> Thresholds {
|
---|
| 41 | get { return (IEnumerable<double>)thresholds.Clone(); }
|
---|
[5736] | 42 | private set { thresholds = value.ToArray(); }
|
---|
[5649] | 43 | }
|
---|
[5678] | 44 | [Storable]
|
---|
| 45 | private double[] classValues;
|
---|
| 46 | public IEnumerable<double> ClassValues {
|
---|
| 47 | get { return (IEnumerable<double>)classValues.Clone(); }
|
---|
[5736] | 48 | private set { classValues = value.ToArray(); }
|
---|
[5678] | 49 | }
|
---|
[8594] | 50 |
|
---|
| 51 | private IDiscriminantFunctionThresholdCalculator thresholdCalculator;
|
---|
[5720] | 52 | [Storable]
|
---|
[8594] | 53 | public IDiscriminantFunctionThresholdCalculator ThresholdCalculator {
|
---|
| 54 | get { return thresholdCalculator; }
|
---|
| 55 | private set { thresholdCalculator = value; }
|
---|
| 56 | }
|
---|
[5720] | 57 |
|
---|
[8594] | 58 |
|
---|
[5649] | 59 | [StorableConstructor]
|
---|
[17097] | 60 | protected SymbolicDiscriminantFunctionClassificationModel(StorableConstructorFlag _) : base(_) { }
|
---|
[5649] | 61 | protected SymbolicDiscriminantFunctionClassificationModel(SymbolicDiscriminantFunctionClassificationModel original, Cloner cloner)
|
---|
| 62 | : base(original, cloner) {
|
---|
| 63 | classValues = (double[])original.classValues.Clone();
|
---|
| 64 | thresholds = (double[])original.thresholds.Clone();
|
---|
[8594] | 65 | thresholdCalculator = cloner.Clone(original.thresholdCalculator);
|
---|
[5649] | 66 | }
|
---|
[14027] | 67 | public SymbolicDiscriminantFunctionClassificationModel(string targetVariable, ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDiscriminantFunctionThresholdCalculator thresholdCalculator,
|
---|
[5720] | 68 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
|
---|
[14027] | 69 | : base(targetVariable, tree, interpreter, lowerEstimationLimit, upperEstimationLimit) {
|
---|
[8531] | 70 | this.thresholds = new double[0];
|
---|
| 71 | this.classValues = new double[0];
|
---|
[8594] | 72 | this.ThresholdCalculator = thresholdCalculator;
|
---|
[5649] | 73 | }
|
---|
| 74 |
|
---|
[8594] | 75 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 76 | private void AfterDeserialization() {
|
---|
[8883] | 77 | // BackwardsCompatibility3.4
|
---|
| 78 | #region Backwards compatible code, remove with 3.5
|
---|
[8594] | 79 | if (ThresholdCalculator == null) ThresholdCalculator = new AccuracyMaximizationThresholdCalculator();
|
---|
[8883] | 80 | #endregion
|
---|
[8594] | 81 | }
|
---|
| 82 |
|
---|
[5649] | 83 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 84 | return new SymbolicDiscriminantFunctionClassificationModel(this, cloner);
|
---|
| 85 | }
|
---|
| 86 |
|
---|
[5736] | 87 | public void SetThresholdsAndClassValues(IEnumerable<double> thresholds, IEnumerable<double> classValues) {
|
---|
| 88 | var classValuesArr = classValues.ToArray();
|
---|
| 89 | var thresholdsArr = thresholds.ToArray();
|
---|
[12702] | 90 | if (thresholdsArr.Length != classValuesArr.Length || thresholdsArr.Length < 1)
|
---|
[8921] | 91 | throw new ArgumentException();
|
---|
[12702] | 92 | if (!double.IsNegativeInfinity(thresholds.First()))
|
---|
[8921] | 93 | throw new ArgumentException();
|
---|
[5736] | 94 |
|
---|
| 95 | this.classValues = classValuesArr;
|
---|
| 96 | this.thresholds = thresholdsArr;
|
---|
| 97 | OnThresholdsChanged(EventArgs.Empty);
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[8594] | 100 | public override void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
| 101 | double[] classValues;
|
---|
| 102 | double[] thresholds;
|
---|
| 103 | var targetClassValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 104 | var estimatedTrainingValues = GetEstimatedValues(problemData.Dataset, rows);
|
---|
| 105 | thresholdCalculator.Calculate(problemData, estimatedTrainingValues, targetClassValues, out classValues, out thresholds);
|
---|
| 106 | SetThresholdsAndClassValues(thresholds, classValues);
|
---|
| 107 | }
|
---|
| 108 |
|
---|
[12702] | 109 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[8594] | 110 | return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows).LimitToRange(LowerEstimationLimit, UpperEstimationLimit);
|
---|
[5649] | 111 | }
|
---|
| 112 |
|
---|
[12702] | 113 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[17177] | 114 | var estimatedValues = GetEstimatedValues(dataset, rows);
|
---|
| 115 | return GetEstimatedClassValues(estimatedValues);
|
---|
| 116 | }
|
---|
| 117 | public IEnumerable<double> GetEstimatedClassValues(IEnumerable<double> estimatedValues) {
|
---|
[8531] | 118 | if (!Thresholds.Any() && !ClassValues.Any()) throw new ArgumentException("No thresholds and class values were set for the current symbolic classification model.");
|
---|
[17177] | 119 | foreach (var x in estimatedValues) {
|
---|
[5649] | 120 | int classIndex = 0;
|
---|
[5678] | 121 | // find first threshold value which is larger than x => class index = threshold index + 1
|
---|
[5649] | 122 | for (int i = 0; i < thresholds.Length; i++) {
|
---|
| 123 | if (x > thresholds[i]) classIndex++;
|
---|
| 124 | else break;
|
---|
| 125 | }
|
---|
[5657] | 126 | yield return classValues.ElementAt(classIndex - 1);
|
---|
[5649] | 127 | }
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[8594] | 130 | public override ISymbolicClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 131 | return CreateDiscriminantClassificationSolution(problemData);
|
---|
| 132 | }
|
---|
| 133 | public SymbolicDiscriminantFunctionClassificationSolution CreateDiscriminantClassificationSolution(IClassificationProblemData problemData) {
|
---|
[8528] | 134 | return new SymbolicDiscriminantFunctionClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
[6604] | 135 | }
|
---|
| 136 | IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
[8594] | 137 | return CreateDiscriminantClassificationSolution(problemData);
|
---|
[6604] | 138 | }
|
---|
| 139 | IDiscriminantFunctionClassificationSolution IDiscriminantFunctionClassificationModel.CreateDiscriminantFunctionClassificationSolution(IClassificationProblemData problemData) {
|
---|
[8594] | 140 | return CreateDiscriminantClassificationSolution(problemData);
|
---|
[6604] | 141 | }
|
---|
| 142 |
|
---|
[5649] | 143 | #region events
|
---|
| 144 | public event EventHandler ThresholdsChanged;
|
---|
| 145 | protected virtual void OnThresholdsChanged(EventArgs e) {
|
---|
| 146 | var listener = ThresholdsChanged;
|
---|
| 147 | if (listener != null) listener(this, e);
|
---|
| 148 | }
|
---|
[5720] | 149 | #endregion
|
---|
[5649] | 150 | }
|
---|
| 151 | }
|
---|