#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
[StorableClass]
[Item("SymbolicClassificationPruningOperator", "An operator which prunes symbolic classificaton trees.")]
public class SymbolicClassificationPruningOperator : SymbolicDataAnalysisExpressionPruningOperator {
private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator";
private const string ModelCreatorParameterName = "ModelCreator";
#region parameter properties
public ILookupParameter ModelCreatorParameter {
get { return (ILookupParameter)Parameters[ModelCreatorParameterName]; }
}
#endregion
protected SymbolicClassificationPruningOperator(SymbolicClassificationPruningOperator original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicClassificationPruningOperator(this, cloner);
}
[StorableConstructor]
protected SymbolicClassificationPruningOperator(bool deserializing) : base(deserializing) { }
public SymbolicClassificationPruningOperator() {
Parameters.Add(new ValueParameter(ImpactValuesCalculatorParameterName, new SymbolicClassificationSolutionImpactValuesCalculator()));
Parameters.Add(new LookupParameter(ModelCreatorParameterName));
}
protected override ISymbolicDataAnalysisModel CreateModel() {
var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(SymbolicExpressionTree, Interpreter, EstimationLimits.Lower, EstimationLimits.Upper);
var problemData = (IClassificationProblemData)ProblemData;
var rows = problemData.TrainingIndices;
model.RecalculateModelParameters(problemData, rows);
return model;
}
protected override double Evaluate(IDataAnalysisModel model) {
var classificationModel = (IClassificationModel)model;
var classificationProblemData = (IClassificationProblemData)ProblemData;
var trainingIndices = Enumerable.Range(FitnessCalculationPartition.Start, FitnessCalculationPartition.Size);
var estimatedValues = classificationModel.GetEstimatedClassValues(ProblemData.Dataset, trainingIndices);
var targetValues = ProblemData.Dataset.GetDoubleValues(classificationProblemData.TargetVariable, trainingIndices);
OnlineCalculatorError errorState;
var quality = OnlineAccuracyCalculator.Calculate(targetValues, estimatedValues, out errorState);
if (errorState != OnlineCalculatorError.None) return double.NaN;
return quality;
}
}
}