#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
///
/// An operator that collects the validation Pareto-best symbolic classification solutions for single objective symbolic classification problems.
///
[Item("SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer", "An operator that collects the validation Pareto-best symbolic classification solutions for single objective symbolic classification problems.")]
[StorableClass]
public sealed class SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationParetoBestSolutionAnalyzer, ISymbolicClassificationModelCreatorOperator {
private const string ModelCreatorParameterName = "ModelCreator";
#region parameter properties
public IValueLookupParameter ModelCreatorParameter {
get { return (IValueLookupParameter)Parameters[ModelCreatorParameterName]; }
}
ILookupParameter ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter {
get { return ModelCreatorParameter; }
}
#endregion
[StorableConstructor]
private SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
private SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer(SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
public SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer()
: base() {
Parameters.Add(new ValueLookupParameter(ModelCreatorParameterName, ""));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
// BackwardsCompatibility3.4
#region Backwards compatible code, remove with 3.5
if (!Parameters.ContainsKey(ModelCreatorParameterName))
Parameters.Add(new ValueLookupParameter(ModelCreatorParameterName, ""));
#endregion
}
protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree) {
var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices);
return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());
}
}
}