[5500] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5500] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[8664] | 22 | using System;
|
---|
[5500] | 23 | using System.Collections.Generic;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
[5501] | 30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
[5618] | 31 | [Item("Mean squared error Evaluator", "Calculates the mean squared error of a symbolic classification solution.")]
|
---|
[5500] | 32 | [StorableClass]
|
---|
[5501] | 33 | public class SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
|
---|
[5500] | 34 | [StorableConstructor]
|
---|
[5501] | 35 | protected SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 36 | protected SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator original, Cloner cloner)
|
---|
[5500] | 37 | : base(original, cloner) {
|
---|
| 38 | }
|
---|
| 39 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[5501] | 40 | return new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(this, cloner);
|
---|
[5500] | 41 | }
|
---|
| 42 |
|
---|
[5505] | 43 | public SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator() : base() { }
|
---|
| 44 |
|
---|
[5514] | 45 | public override bool Maximization { get { return false; } }
|
---|
| 46 |
|
---|
[10507] | 47 | public override IOperation InstrumentedApply() {
|
---|
[5500] | 48 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
[5851] | 49 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
[8664] | 50 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
[5500] | 51 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
[10507] | 52 | return base.InstrumentedApply();
|
---|
[5500] | 53 | }
|
---|
| 54 |
|
---|
[8664] | 55 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
|
---|
[5500] | 56 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
[8664] | 57 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
[5942] | 58 | OnlineCalculatorError errorState;
|
---|
[8664] | 59 |
|
---|
| 60 | double mse;
|
---|
| 61 | if (applyLinearScaling) {
|
---|
| 62 | var mseCalculator = new OnlineMeanSquaredErrorCalculator();
|
---|
| 63 | CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, mseCalculator, problemData.Dataset.Rows);
|
---|
| 64 | errorState = mseCalculator.ErrorState;
|
---|
| 65 | mse = mseCalculator.MeanSquaredError;
|
---|
| 66 | } else {
|
---|
| 67 | IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
| 68 | mse = OnlineMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
|
---|
| 69 | }
|
---|
| 70 | if (errorState != OnlineCalculatorError.None) return Double.NaN;
|
---|
| 71 | return mse;
|
---|
[5500] | 72 | }
|
---|
[5613] | 73 |
|
---|
| 74 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
[5722] | 75 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
[5770] | 76 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
[8664] | 77 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
[5747] | 78 |
|
---|
[8664] | 79 | double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
[5722] | 80 |
|
---|
| 81 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
[5770] | 82 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
[8664] | 83 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
[5722] | 84 |
|
---|
| 85 | return mse;
|
---|
[5613] | 86 | }
|
---|
[5500] | 87 | }
|
---|
| 88 | }
|
---|