#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Drawing;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
[StorableClass]
[Item("NearestNeighborModelCreator", "")]
public sealed class NearestNeighborModelCreator : ParameterizedNamedItem, ISymbolicClassificationModelCreator {
public static new Image StaticItemImage {
get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; }
}
public override Image ItemImage {
get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; }
}
public IFixedValueParameter KParameter {
get { return (IFixedValueParameter)Parameters["K"]; }
}
[StorableConstructor]
private NearestNeighborModelCreator(bool deserializing) : base(deserializing) { }
private NearestNeighborModelCreator(NearestNeighborModelCreator original, Cloner cloner) : base(original, cloner) { }
public NearestNeighborModelCreator()
: base() {
Parameters.Add(new FixedValueParameter("K", "The number of neighbours to use to determine the class.", new IntValue(11)));
}
public override IDeepCloneable Clone(Cloner cloner) { return new NearestNeighborModelCreator(this, cloner); }
public ISymbolicClassificationModel CreateSymbolicClassificationModel(string targetVariable, ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) {
return new SymbolicNearestNeighbourClassificationModel(targetVariable, KParameter.Value.Value, tree, interpreter, lowerEstimationLimit, upperEstimationLimit);
}
}
}