#region Copyright notice and license
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://github.com/jskeet/dotnet-protobufs/
// Original C++/Java/Python code:
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endregion
using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Text;
using Google.ProtocolBuffers.Collections;
using Google.ProtocolBuffers.Descriptors;
namespace Google.ProtocolBuffers
{
///
/// Encodes and writes protocol message fields.
///
///
/// This class contains two kinds of methods: methods that write specific
/// protocol message constructs and field types (e.g. WriteTag and
/// WriteInt32) and methods that write low-level values (e.g.
/// WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
/// messages, you should use the former methods, but if you are writing some
/// other format of your own design, use the latter. The names of the former
/// methods are taken from the protocol buffer type names, not .NET types.
/// (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)
///
public sealed partial class CodedOutputStream : ICodedOutputStream
{
///
/// The buffer size used by CreateInstance(Stream).
///
public static readonly int DefaultBufferSize = 4096;
private readonly byte[] buffer;
private readonly int limit;
private int position;
private readonly Stream output;
#region Construction
private CodedOutputStream(byte[] buffer, int offset, int length)
{
this.output = null;
this.buffer = buffer;
this.position = offset;
this.limit = offset + length;
}
private CodedOutputStream(Stream output, byte[] buffer)
{
this.output = output;
this.buffer = buffer;
this.position = 0;
this.limit = buffer.Length;
}
///
/// Creates a new CodedOutputStream which write to the given stream.
///
public static CodedOutputStream CreateInstance(Stream output)
{
return CreateInstance(output, DefaultBufferSize);
}
///
/// Creates a new CodedOutputStream which write to the given stream and uses
/// the specified buffer size.
///
public static CodedOutputStream CreateInstance(Stream output, int bufferSize)
{
return new CodedOutputStream(output, new byte[bufferSize]);
}
///
/// Creates a new CodedOutputStream that writes directly to the given
/// byte array. If more bytes are written than fit in the array,
/// OutOfSpaceException will be thrown.
///
public static CodedOutputStream CreateInstance(byte[] flatArray)
{
return CreateInstance(flatArray, 0, flatArray.Length);
}
///
/// Creates a new CodedOutputStream that writes directly to the given
/// byte array slice. If more bytes are written than fit in the array,
/// OutOfSpaceException will be thrown.
///
public static CodedOutputStream CreateInstance(byte[] flatArray, int offset, int length)
{
return new CodedOutputStream(flatArray, offset, length);
}
#endregion
void ICodedOutputStream.WriteMessageStart() { }
void ICodedOutputStream.WriteMessageEnd() { Flush(); }
#region Writing of unknown fields
[Obsolete]
public void WriteUnknownGroup(int fieldNumber, IMessageLite value)
{
WriteTag(fieldNumber, WireFormat.WireType.StartGroup);
value.WriteTo(this);
WriteTag(fieldNumber, WireFormat.WireType.EndGroup);
}
public void WriteUnknownBytes(int fieldNumber, ByteString value)
{
WriteBytes(fieldNumber, null /*not used*/, value);
}
[CLSCompliant(false)]
public void WriteUnknownField(int fieldNumber, WireFormat.WireType wireType, ulong value)
{
if (wireType == WireFormat.WireType.Varint)
{
WriteUInt64(fieldNumber, null /*not used*/, value);
}
else if (wireType == WireFormat.WireType.Fixed32)
{
WriteFixed32(fieldNumber, null /*not used*/, (uint) value);
}
else if (wireType == WireFormat.WireType.Fixed64)
{
WriteFixed64(fieldNumber, null /*not used*/, value);
}
else
{
throw InvalidProtocolBufferException.InvalidWireType();
}
}
#endregion
#region Writing of tags and fields
public void WriteField(FieldType fieldType, int fieldNumber, string fieldName, object value)
{
switch (fieldType)
{
case FieldType.String:
WriteString(fieldNumber, fieldName, (string) value);
break;
case FieldType.Message:
WriteMessage(fieldNumber, fieldName, (IMessageLite) value);
break;
case FieldType.Group:
WriteGroup(fieldNumber, fieldName, (IMessageLite) value);
break;
case FieldType.Bytes:
WriteBytes(fieldNumber, fieldName, (ByteString) value);
break;
case FieldType.Bool:
WriteBool(fieldNumber, fieldName, (bool) value);
break;
case FieldType.Enum:
if (value is Enum)
{
WriteEnum(fieldNumber, fieldName, (int) value, null /*not used*/);
}
else
{
WriteEnum(fieldNumber, fieldName, ((IEnumLite) value).Number, null /*not used*/);
}
break;
case FieldType.Int32:
WriteInt32(fieldNumber, fieldName, (int) value);
break;
case FieldType.Int64:
WriteInt64(fieldNumber, fieldName, (long) value);
break;
case FieldType.UInt32:
WriteUInt32(fieldNumber, fieldName, (uint) value);
break;
case FieldType.UInt64:
WriteUInt64(fieldNumber, fieldName, (ulong) value);
break;
case FieldType.SInt32:
WriteSInt32(fieldNumber, fieldName, (int) value);
break;
case FieldType.SInt64:
WriteSInt64(fieldNumber, fieldName, (long) value);
break;
case FieldType.Fixed32:
WriteFixed32(fieldNumber, fieldName, (uint) value);
break;
case FieldType.Fixed64:
WriteFixed64(fieldNumber, fieldName, (ulong) value);
break;
case FieldType.SFixed32:
WriteSFixed32(fieldNumber, fieldName, (int) value);
break;
case FieldType.SFixed64:
WriteSFixed64(fieldNumber, fieldName, (long) value);
break;
case FieldType.Double:
WriteDouble(fieldNumber, fieldName, (double) value);
break;
case FieldType.Float:
WriteFloat(fieldNumber, fieldName, (float) value);
break;
}
}
///
/// Writes a double field value, including tag, to the stream.
///
public void WriteDouble(int fieldNumber, string fieldName, double value)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
WriteDoubleNoTag(value);
}
///
/// Writes a float field value, including tag, to the stream.
///
public void WriteFloat(int fieldNumber, string fieldName, float value)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed32);
WriteFloatNoTag(value);
}
///
/// Writes a uint64 field value, including tag, to the stream.
///
[CLSCompliant(false)]
public void WriteUInt64(int fieldNumber, string fieldName, ulong value)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteRawVarint64(value);
}
///
/// Writes an int64 field value, including tag, to the stream.
///
public void WriteInt64(int fieldNumber, string fieldName, long value)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteRawVarint64((ulong) value);
}
///
/// Writes an int32 field value, including tag, to the stream.
///
public void WriteInt32(int fieldNumber, string fieldName, int value)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
if (value >= 0)
{
WriteRawVarint32((uint) value);
}
else
{
// Must sign-extend.
WriteRawVarint64((ulong) value);
}
}
///
/// Writes a fixed64 field value, including tag, to the stream.
///
[CLSCompliant(false)]
public void WriteFixed64(int fieldNumber, string fieldName, ulong value)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
WriteRawLittleEndian64(value);
}
///
/// Writes a fixed32 field value, including tag, to the stream.
///
[CLSCompliant(false)]
public void WriteFixed32(int fieldNumber, string fieldName, uint value)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed32);
WriteRawLittleEndian32(value);
}
///
/// Writes a bool field value, including tag, to the stream.
///
public void WriteBool(int fieldNumber, string fieldName, bool value)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteRawByte(value ? (byte) 1 : (byte) 0);
}
///
/// Writes a string field value, including tag, to the stream.
///
public void WriteString(int fieldNumber, string fieldName, string value)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
// Optimise the case where we have enough space to write
// the string directly to the buffer, which should be common.
int length = Encoding.UTF8.GetByteCount(value);
WriteRawVarint32((uint) length);
if (limit - position >= length)
{
Encoding.UTF8.GetBytes(value, 0, value.Length, buffer, position);
position += length;
}
else
{
byte[] bytes = Encoding.UTF8.GetBytes(value);
WriteRawBytes(bytes);
}
}
///
/// Writes a group field value, including tag, to the stream.
///
public void WriteGroup(int fieldNumber, string fieldName, IMessageLite value)
{
WriteTag(fieldNumber, WireFormat.WireType.StartGroup);
value.WriteTo(this);
WriteTag(fieldNumber, WireFormat.WireType.EndGroup);
}
public void WriteMessage(int fieldNumber, string fieldName, IMessageLite value)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) value.SerializedSize);
value.WriteTo(this);
}
public void WriteBytes(int fieldNumber, string fieldName, ByteString value)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) value.Length);
value.WriteRawBytesTo(this);
}
[CLSCompliant(false)]
public void WriteUInt32(int fieldNumber, string fieldName, uint value)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteRawVarint32(value);
}
public void WriteEnum(int fieldNumber, string fieldName, int value, object rawValue)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteInt32NoTag(value);
}
public void WriteSFixed32(int fieldNumber, string fieldName, int value)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed32);
WriteRawLittleEndian32((uint) value);
}
public void WriteSFixed64(int fieldNumber, string fieldName, long value)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
WriteRawLittleEndian64((ulong) value);
}
public void WriteSInt32(int fieldNumber, string fieldName, int value)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteRawVarint32(EncodeZigZag32(value));
}
public void WriteSInt64(int fieldNumber, string fieldName, long value)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteRawVarint64(EncodeZigZag64(value));
}
public void WriteMessageSetExtension(int fieldNumber, string fieldName, IMessageLite value)
{
WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.StartGroup);
WriteUInt32(WireFormat.MessageSetField.TypeID, "type_id", (uint) fieldNumber);
WriteMessage(WireFormat.MessageSetField.Message, "message", value);
WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.EndGroup);
}
public void WriteMessageSetExtension(int fieldNumber, string fieldName, ByteString value)
{
WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.StartGroup);
WriteUInt32(WireFormat.MessageSetField.TypeID, "type_id", (uint) fieldNumber);
WriteBytes(WireFormat.MessageSetField.Message, "message", value);
WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.EndGroup);
}
#endregion
#region Writing of values without tags
public void WriteFieldNoTag(FieldType fieldType, object value)
{
switch (fieldType)
{
case FieldType.String:
WriteStringNoTag((string) value);
break;
case FieldType.Message:
WriteMessageNoTag((IMessageLite) value);
break;
case FieldType.Group:
WriteGroupNoTag((IMessageLite) value);
break;
case FieldType.Bytes:
WriteBytesNoTag((ByteString) value);
break;
case FieldType.Bool:
WriteBoolNoTag((bool) value);
break;
case FieldType.Enum:
if (value is Enum)
{
WriteEnumNoTag((int) value);
}
else
{
WriteEnumNoTag(((IEnumLite) value).Number);
}
break;
case FieldType.Int32:
WriteInt32NoTag((int) value);
break;
case FieldType.Int64:
WriteInt64NoTag((long) value);
break;
case FieldType.UInt32:
WriteUInt32NoTag((uint) value);
break;
case FieldType.UInt64:
WriteUInt64NoTag((ulong) value);
break;
case FieldType.SInt32:
WriteSInt32NoTag((int) value);
break;
case FieldType.SInt64:
WriteSInt64NoTag((long) value);
break;
case FieldType.Fixed32:
WriteFixed32NoTag((uint) value);
break;
case FieldType.Fixed64:
WriteFixed64NoTag((ulong) value);
break;
case FieldType.SFixed32:
WriteSFixed32NoTag((int) value);
break;
case FieldType.SFixed64:
WriteSFixed64NoTag((long) value);
break;
case FieldType.Double:
WriteDoubleNoTag((double) value);
break;
case FieldType.Float:
WriteFloatNoTag((float) value);
break;
}
}
///
/// Writes a double field value, including tag, to the stream.
///
public void WriteDoubleNoTag(double value)
{
#if SILVERLIGHT || COMPACT_FRAMEWORK_35
byte[] rawBytes = BitConverter.GetBytes(value);
if (!BitConverter.IsLittleEndian)
ByteArray.Reverse(rawBytes);
if (limit - position >= 8)
{
buffer[position++] = rawBytes[0];
buffer[position++] = rawBytes[1];
buffer[position++] = rawBytes[2];
buffer[position++] = rawBytes[3];
buffer[position++] = rawBytes[4];
buffer[position++] = rawBytes[5];
buffer[position++] = rawBytes[6];
buffer[position++] = rawBytes[7];
}
else
WriteRawBytes(rawBytes, 0, 8);
#else
WriteRawLittleEndian64((ulong) BitConverter.DoubleToInt64Bits(value));
#endif
}
///
/// Writes a float field value, without a tag, to the stream.
///
public void WriteFloatNoTag(float value)
{
byte[] rawBytes = BitConverter.GetBytes(value);
if (!BitConverter.IsLittleEndian)
{
ByteArray.Reverse(rawBytes);
}
if (limit - position >= 4)
{
buffer[position++] = rawBytes[0];
buffer[position++] = rawBytes[1];
buffer[position++] = rawBytes[2];
buffer[position++] = rawBytes[3];
}
else
{
WriteRawBytes(rawBytes, 0, 4);
}
}
///
/// Writes a uint64 field value, without a tag, to the stream.
///
[CLSCompliant(false)]
public void WriteUInt64NoTag(ulong value)
{
WriteRawVarint64(value);
}
///
/// Writes an int64 field value, without a tag, to the stream.
///
public void WriteInt64NoTag(long value)
{
WriteRawVarint64((ulong) value);
}
///
/// Writes an int32 field value, without a tag, to the stream.
///
public void WriteInt32NoTag(int value)
{
if (value >= 0)
{
WriteRawVarint32((uint) value);
}
else
{
// Must sign-extend.
WriteRawVarint64((ulong) value);
}
}
///
/// Writes a fixed64 field value, without a tag, to the stream.
///
[CLSCompliant(false)]
public void WriteFixed64NoTag(ulong value)
{
WriteRawLittleEndian64(value);
}
///
/// Writes a fixed32 field value, without a tag, to the stream.
///
[CLSCompliant(false)]
public void WriteFixed32NoTag(uint value)
{
WriteRawLittleEndian32(value);
}
///
/// Writes a bool field value, without a tag, to the stream.
///
public void WriteBoolNoTag(bool value)
{
WriteRawByte(value ? (byte) 1 : (byte) 0);
}
///
/// Writes a string field value, without a tag, to the stream.
///
public void WriteStringNoTag(string value)
{
// Optimise the case where we have enough space to write
// the string directly to the buffer, which should be common.
int length = Encoding.UTF8.GetByteCount(value);
WriteRawVarint32((uint) length);
if (limit - position >= length)
{
Encoding.UTF8.GetBytes(value, 0, value.Length, buffer, position);
position += length;
}
else
{
byte[] bytes = Encoding.UTF8.GetBytes(value);
WriteRawBytes(bytes);
}
}
///
/// Writes a group field value, without a tag, to the stream.
///
public void WriteGroupNoTag(IMessageLite value)
{
value.WriteTo(this);
}
public void WriteMessageNoTag(IMessageLite value)
{
WriteRawVarint32((uint) value.SerializedSize);
value.WriteTo(this);
}
public void WriteBytesNoTag(ByteString value)
{
WriteRawVarint32((uint) value.Length);
value.WriteRawBytesTo(this);
}
[CLSCompliant(false)]
public void WriteUInt32NoTag(uint value)
{
WriteRawVarint32(value);
}
public void WriteEnumNoTag(int value)
{
WriteInt32NoTag(value);
}
public void WriteSFixed32NoTag(int value)
{
WriteRawLittleEndian32((uint) value);
}
public void WriteSFixed64NoTag(long value)
{
WriteRawLittleEndian64((ulong) value);
}
public void WriteSInt32NoTag(int value)
{
WriteRawVarint32(EncodeZigZag32(value));
}
public void WriteSInt64NoTag(long value)
{
WriteRawVarint64(EncodeZigZag64(value));
}
#endregion
#region Write array members
public void WriteArray(FieldType fieldType, int fieldNumber, string fieldName, IEnumerable list)
{
foreach (object element in list)
{
WriteField(fieldType, fieldNumber, fieldName, element);
}
}
public void WriteGroupArray(int fieldNumber, string fieldName, IEnumerable list)
where T : IMessageLite
{
foreach (IMessageLite value in list)
{
WriteGroup(fieldNumber, fieldName, value);
}
}
public void WriteMessageArray(int fieldNumber, string fieldName, IEnumerable list)
where T : IMessageLite
{
foreach (IMessageLite value in list)
{
WriteMessage(fieldNumber, fieldName, value);
}
}
public void WriteStringArray(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteString(fieldNumber, fieldName, value);
}
}
public void WriteBytesArray(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteBytes(fieldNumber, fieldName, value);
}
}
public void WriteBoolArray(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteBool(fieldNumber, fieldName, value);
}
}
public void WriteInt32Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteInt32(fieldNumber, fieldName, value);
}
}
public void WriteSInt32Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteSInt32(fieldNumber, fieldName, value);
}
}
public void WriteUInt32Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteUInt32(fieldNumber, fieldName, value);
}
}
public void WriteFixed32Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteFixed32(fieldNumber, fieldName, value);
}
}
public void WriteSFixed32Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteSFixed32(fieldNumber, fieldName, value);
}
}
public void WriteInt64Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteInt64(fieldNumber, fieldName, value);
}
}
public void WriteSInt64Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteSInt64(fieldNumber, fieldName, value);
}
}
public void WriteUInt64Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteUInt64(fieldNumber, fieldName, value);
}
}
public void WriteFixed64Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteFixed64(fieldNumber, fieldName, value);
}
}
public void WriteSFixed64Array(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteSFixed64(fieldNumber, fieldName, value);
}
}
public void WriteDoubleArray(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteDouble(fieldNumber, fieldName, value);
}
}
public void WriteFloatArray(int fieldNumber, string fieldName, IEnumerable list)
{
foreach (var value in list)
{
WriteFloat(fieldNumber, fieldName, value);
}
}
[CLSCompliant(false)]
public void WriteEnumArray(int fieldNumber, string fieldName, IEnumerable list)
where T : struct, IComparable, IFormattable, IConvertible
{
if (list is ICastArray)
{
foreach (int value in ((ICastArray) list).CastArray())
{
WriteEnum(fieldNumber, fieldName, value, null /*unused*/);
}
}
else
{
foreach (object value in list)
{
WriteEnum(fieldNumber, fieldName, (int) value, null /*unused*/);
}
}
}
#endregion
#region Write packed array members
public void WritePackedArray(FieldType fieldType, int fieldNumber, string fieldName, IEnumerable list)
{
int calculatedSize = 0;
foreach (object element in list)
{
calculatedSize += ComputeFieldSizeNoTag(fieldType, element);
}
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (object element in list)
{
WriteFieldNoTag(fieldType, element);
}
}
public void WritePackedGroupArray(int fieldNumber, string fieldName, int calculatedSize, IEnumerable list)
where T : IMessageLite
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (IMessageLite value in list)
{
WriteGroupNoTag(value);
}
}
public void WritePackedMessageArray(int fieldNumber, string fieldName, int calculatedSize,
IEnumerable list)
where T : IMessageLite
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (IMessageLite value in list)
{
WriteMessageNoTag(value);
}
}
public void WritePackedStringArray(int fieldNumber, string fieldName, int calculatedSize,
IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteStringNoTag(value);
}
}
public void WritePackedBytesArray(int fieldNumber, string fieldName, int calculatedSize,
IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteBytesNoTag(value);
}
}
public void WritePackedBoolArray(int fieldNumber, string fieldName, int calculatedSize, IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteBoolNoTag(value);
}
}
public void WritePackedInt32Array(int fieldNumber, string fieldName, int calculatedSize, IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteInt32NoTag(value);
}
}
public void WritePackedSInt32Array(int fieldNumber, string fieldName, int calculatedSize, IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteSInt32NoTag(value);
}
}
public void WritePackedUInt32Array(int fieldNumber, string fieldName, int calculatedSize, IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteUInt32NoTag(value);
}
}
public void WritePackedFixed32Array(int fieldNumber, string fieldName, int calculatedSize,
IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteFixed32NoTag(value);
}
}
public void WritePackedSFixed32Array(int fieldNumber, string fieldName, int calculatedSize,
IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteSFixed32NoTag(value);
}
}
public void WritePackedInt64Array(int fieldNumber, string fieldName, int calculatedSize, IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteInt64NoTag(value);
}
}
public void WritePackedSInt64Array(int fieldNumber, string fieldName, int calculatedSize, IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteSInt64NoTag(value);
}
}
public void WritePackedUInt64Array(int fieldNumber, string fieldName, int calculatedSize,
IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteUInt64NoTag(value);
}
}
public void WritePackedFixed64Array(int fieldNumber, string fieldName, int calculatedSize,
IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteFixed64NoTag(value);
}
}
public void WritePackedSFixed64Array(int fieldNumber, string fieldName, int calculatedSize,
IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteSFixed64NoTag(value);
}
}
public void WritePackedDoubleArray(int fieldNumber, string fieldName, int calculatedSize,
IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteDoubleNoTag(value);
}
}
public void WritePackedFloatArray(int fieldNumber, string fieldName, int calculatedSize, IEnumerable list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
foreach (var value in list)
{
WriteFloatNoTag(value);
}
}
[CLSCompliant(false)]
public void WritePackedEnumArray(int fieldNumber, string fieldName, int calculatedSize, IEnumerable list)
where T : struct, IComparable, IFormattable, IConvertible
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteRawVarint32((uint) calculatedSize);
if (list is ICastArray)
{
foreach (int value in ((ICastArray) list).CastArray())
{
WriteEnumNoTag(value);
}
}
else
{
foreach (object value in list)
{
WriteEnumNoTag((int) value);
}
}
}
#endregion
#region Underlying writing primitives
///
/// Encodes and writes a tag.
///
[CLSCompliant(false)]
public void WriteTag(int fieldNumber, WireFormat.WireType type)
{
WriteRawVarint32(WireFormat.MakeTag(fieldNumber, type));
}
///
/// Writes a 32 bit value as a varint. The fast route is taken when
/// there's enough buffer space left to whizz through without checking
/// for each byte; otherwise, we resort to calling WriteRawByte each time.
///
[CLSCompliant(false)]
public void WriteRawVarint32(uint value)
{
while (value > 127 && position < limit)
{
buffer[position++] = (byte) ((value & 0x7F) | 0x80);
value >>= 7;
}
while (value > 127)
{
WriteRawByte((byte) ((value & 0x7F) | 0x80));
value >>= 7;
}
if (position < limit)
{
buffer[position++] = (byte) value;
}
else
{
WriteRawByte((byte) value);
}
}
[CLSCompliant(false)]
public void WriteRawVarint64(ulong value)
{
while (value > 127 && position < limit)
{
buffer[position++] = (byte) ((value & 0x7F) | 0x80);
value >>= 7;
}
while (value > 127)
{
WriteRawByte((byte) ((value & 0x7F) | 0x80));
value >>= 7;
}
if (position < limit)
{
buffer[position++] = (byte) value;
}
else
{
WriteRawByte((byte) value);
}
}
[CLSCompliant(false)]
public void WriteRawLittleEndian32(uint value)
{
if (position + 4 > limit)
{
WriteRawByte((byte) value);
WriteRawByte((byte) (value >> 8));
WriteRawByte((byte) (value >> 16));
WriteRawByte((byte) (value >> 24));
}
else
{
buffer[position++] = ((byte) value);
buffer[position++] = ((byte) (value >> 8));
buffer[position++] = ((byte) (value >> 16));
buffer[position++] = ((byte) (value >> 24));
}
}
[CLSCompliant(false)]
public void WriteRawLittleEndian64(ulong value)
{
if (position + 8 > limit)
{
WriteRawByte((byte) value);
WriteRawByte((byte) (value >> 8));
WriteRawByte((byte) (value >> 16));
WriteRawByte((byte) (value >> 24));
WriteRawByte((byte) (value >> 32));
WriteRawByte((byte) (value >> 40));
WriteRawByte((byte) (value >> 48));
WriteRawByte((byte) (value >> 56));
}
else
{
buffer[position++] = ((byte) value);
buffer[position++] = ((byte) (value >> 8));
buffer[position++] = ((byte) (value >> 16));
buffer[position++] = ((byte) (value >> 24));
buffer[position++] = ((byte) (value >> 32));
buffer[position++] = ((byte) (value >> 40));
buffer[position++] = ((byte) (value >> 48));
buffer[position++] = ((byte) (value >> 56));
}
}
public void WriteRawByte(byte value)
{
if (position == limit)
{
RefreshBuffer();
}
buffer[position++] = value;
}
[CLSCompliant(false)]
public void WriteRawByte(uint value)
{
WriteRawByte((byte) value);
}
///
/// Writes out an array of bytes.
///
public void WriteRawBytes(byte[] value)
{
WriteRawBytes(value, 0, value.Length);
}
///
/// Writes out part of an array of bytes.
///
public void WriteRawBytes(byte[] value, int offset, int length)
{
if (limit - position >= length)
{
ByteArray.Copy(value, offset, buffer, position, length);
// We have room in the current buffer.
position += length;
}
else
{
// Write extends past current buffer. Fill the rest of this buffer and
// flush.
int bytesWritten = limit - position;
ByteArray.Copy(value, offset, buffer, position, bytesWritten);
offset += bytesWritten;
length -= bytesWritten;
position = limit;
RefreshBuffer();
// Now deal with the rest.
// Since we have an output stream, this is our buffer
// and buffer offset == 0
if (length <= limit)
{
// Fits in new buffer.
ByteArray.Copy(value, offset, buffer, 0, length);
position = length;
}
else
{
// Write is very big. Let's do it all at once.
output.Write(value, offset, length);
}
}
}
#endregion
///
/// Encode a 32-bit value with ZigZag encoding.
///
///
/// ZigZag encodes signed integers into values that can be efficiently
/// encoded with varint. (Otherwise, negative values must be
/// sign-extended to 64 bits to be varint encoded, thus always taking
/// 10 bytes on the wire.)
///
[CLSCompliant(false)]
public static uint EncodeZigZag32(int n)
{
// Note: the right-shift must be arithmetic
return (uint) ((n << 1) ^ (n >> 31));
}
///
/// Encode a 64-bit value with ZigZag encoding.
///
///
/// ZigZag encodes signed integers into values that can be efficiently
/// encoded with varint. (Otherwise, negative values must be
/// sign-extended to 64 bits to be varint encoded, thus always taking
/// 10 bytes on the wire.)
///
[CLSCompliant(false)]
public static ulong EncodeZigZag64(long n)
{
return (ulong) ((n << 1) ^ (n >> 63));
}
private void RefreshBuffer()
{
if (output == null)
{
// We're writing to a single buffer.
throw new OutOfSpaceException();
}
// Since we have an output stream, this is our buffer
// and buffer offset == 0
output.Write(buffer, 0, position);
position = 0;
}
///
/// Indicates that a CodedOutputStream wrapping a flat byte array
/// ran out of space.
///
public sealed class OutOfSpaceException : IOException
{
internal OutOfSpaceException()
: base("CodedOutputStream was writing to a flat byte array and ran out of space.")
{
}
}
public void Flush()
{
if (output != null)
{
RefreshBuffer();
}
}
///
/// Verifies that SpaceLeft returns zero. It's common to create a byte array
/// that is exactly big enough to hold a message, then write to it with
/// a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
/// the message was actually as big as expected, which can help bugs.
///
public void CheckNoSpaceLeft()
{
if (SpaceLeft != 0)
{
throw new InvalidOperationException("Did not write as much data as expected.");
}
}
///
/// If writing to a flat array, returns the space left in the array. Otherwise,
/// throws an InvalidOperationException.
///
public int SpaceLeft
{
get
{
if (output == null)
{
return limit - position;
}
else
{
throw new InvalidOperationException(
"SpaceLeft can only be called on CodedOutputStreams that are " +
"writing to a flat array.");
}
}
}
}
}