#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HEAL.Attic;
namespace HeuristicLab.Encodings.RealVectorEncoding {
[Item("StochasticPolynomialMultiMoveGenerator", "Generates polynomial moves from a given real vector.")]
[StorableType("94B0F4BE-E2CE-4521-8351-AAA21611D589")]
public class StochasticPolynomialMultiMoveGenerator : AdditiveMoveGenerator, IMultiMoveGenerator {
///
/// The maximum manipulation parameter specifies the range of the manipulation. The value specified here is the highest value the mutation will ever add to the current value.
///
public ValueLookupParameter MaximumManipulationParameter {
get { return (ValueLookupParameter)Parameters["MaximumManipulation"]; }
}
///
/// The contiguity parameter specifies the shape of the probability density function that controls the mutation. Setting it to 0 is similar to a uniform distribution over the entire manipulation range (specified by .
/// A higher value will shape the density function such that values closer to 0 (little manipulation) are more likely than values closer to 1 or -1 (maximum manipulation).
///
public IValueLookupParameter ContiguityParameter {
get { return (IValueLookupParameter)Parameters["Contiguity"]; }
}
public IValueLookupParameter SampleSizeParameter {
get { return (IValueLookupParameter)Parameters["SampleSize"]; }
}
[StorableConstructor]
protected StochasticPolynomialMultiMoveGenerator(StorableConstructorFlag _) : base(_) { }
protected StochasticPolynomialMultiMoveGenerator(StochasticPolynomialMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { }
public StochasticPolynomialMultiMoveGenerator()
: base() {
Parameters.Add(new ValueLookupParameter("Contiguity", "Specifies whether the manipulation should produce far stretching (small value) or close (large value) manipulations with higher probability. Valid values must be greater or equal to 0.", new DoubleValue(2)));
Parameters.Add(new ValueLookupParameter("SampleSize", "The number of moves that should be generated."));
Parameters.Add(new ValueLookupParameter("MaximumManipulation", "Specifies the maximum value that should be added or subtracted by the manipulation. If this value is set to 0 no mutation will be performed.", new DoubleValue(1)));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new StochasticPolynomialMultiMoveGenerator(this, cloner);
}
public static AdditiveMove[] Apply(IRandom random, RealVector vector, double contiguity, int sampleSize, double maxManipulation, DoubleMatrix bounds) {
AdditiveMove[] moves = new AdditiveMove[sampleSize];
for (int i = 0; i < sampleSize; i++) {
int index = random.Next(vector.Length);
double strength = 0, min = bounds[index % bounds.Rows, 0], max = bounds[index % bounds.Rows, 1];
do {
strength = PolynomialOnePositionManipulator.Apply(random, contiguity) * maxManipulation;
} while (vector[index] + strength < min || vector[index] + strength > max);
moves[i] = new AdditiveMove(index, strength);
}
return moves;
}
protected override AdditiveMove[] GenerateMoves(IRandom random, RealVector realVector, DoubleMatrix bounds) {
return Apply(random, realVector, ContiguityParameter.ActualValue.Value, SampleSizeParameter.ActualValue.Value, MaximumManipulationParameter.ActualValue.Value, bounds);
}
}
}