#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Encodings.LinearLinkageEncoding { [Item("Split Group Manipulator", "Performs a maximum of N split operations on the groups. An already split group may be split again.")] [StorableClass] public sealed class SplitGroupManipulator : LinearLinkageManipulator { public IValueLookupParameter NParameter { get { return (IValueLookupParameter)Parameters["N"]; } } [StorableConstructor] private SplitGroupManipulator(bool deserializing) : base(deserializing) { } private SplitGroupManipulator(SplitGroupManipulator original, Cloner cloner) : base(original, cloner) { } public SplitGroupManipulator() { Parameters.Add(new ValueLookupParameter("N", "The number of groups to split.", new IntValue(1))); } public SplitGroupManipulator(int n) : this() { NParameter.Value = new IntValue(n); } public override IDeepCloneable Clone(Cloner cloner) { return new SplitGroupManipulator(this, cloner); } public static void Apply(IRandom random, LinearLinkage lle, int n) { var grouping = lle.GetGroups().ToList(); var groupsLargerOne = grouping.Select((v, i) => Tuple.Create(i, v)) .Where(x => x.Item2.Count > 1) .ToDictionary(x => x.Item1, x => x.Item2); if (groupsLargerOne.Count == 0) return; var toRemove = new List(); for (var i = 0; i < n; i++) { var g = groupsLargerOne.Keys.SampleRandom(random); var idx = random.Next(1, groupsLargerOne[g].Count); // shuffle here to avoid a potential bias of grouping smaller and larger numbers together var tmp = groupsLargerOne[g].Shuffle(random); var before = new List(); var after = new List(); foreach (var t in tmp) { if (idx > 0) before.Add(t); else after.Add(t); idx--; } if (before.Count > 1) groupsLargerOne[grouping.Count] = before; grouping.Add(before); if (after.Count > 1) groupsLargerOne[grouping.Count] = after; grouping.Add(after); toRemove.Add(g); groupsLargerOne.Remove(g); if (groupsLargerOne.Count == 0) break; } foreach (var r in toRemove.OrderByDescending(x => x)) grouping.RemoveAt(r); lle.SetGroups(grouping); } protected override void Manipulate(IRandom random, LinearLinkage lle) { var N = NParameter.ActualValue.Value; Apply(random, lle, N); } } }