#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.LinearLinkageEncoding { [Item("Group Crossover", "The Group Crossover is implemented as described in Korkmaz, E.E. 2010. Multi-objective Genetic Algorithms for grouping problems. Applied Intelligence 33(2), pp. 179-192.")] [StorableClass] public sealed class GroupCrossover : LinearLinkageCrossover { [StorableConstructor] private GroupCrossover(bool deserializing) : base(deserializing) { } private GroupCrossover(GroupCrossover original, Cloner cloner) : base(original, cloner) { } public GroupCrossover() { } public override IDeepCloneable Clone(Cloner cloner) { return new GroupCrossover(this, cloner); } public static LinearLinkage Apply(IRandom random, LinearLinkage p1, LinearLinkage p2) { var length = p1.Length; var child = new LinearLinkage(length); var endNodes = new HashSet(); for (var i = 0; i < length; i++) { if ((p1[i] == i && p2[i] == i) || ((p1[i] == i || p2[i] == i) && random.NextDouble() < 0.5)) { child[i] = i; endNodes.Add(i); } } for (var i = 0; i < length; i++) { if (endNodes.Contains(i)) continue; var p1End = endNodes.Contains(p1[i]); var p2End = endNodes.Contains(p2[i]); if ((p1End && p2End) || (!p1End && !p2End)) { child[i] = random.NextDouble() < 0.5 ? p1[i] : p2[i]; } else if (p1End) { child[i] = p1[i]; } else { child[i] = p2[i]; } } child.LinearizeTreeStructures(); return child; } protected override LinearLinkage Cross(IRandom random, ItemArray parents) { if (parents.Length != 2) throw new InvalidOperationException(Name + ": Can only cross exactly two parents."); return Apply(random, parents[0], parents[1]); } } }