#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.DataPreprocessing { public class ProblemDataCreator { private readonly IPreprocessingContext context; private Dataset ExportedDataset { get { return exporteDataset ?? (exporteDataset = context.Data.ExportToDataset()); } } private Dataset exporteDataset; private IList Transformations { get { return context.Data.Transformations; } } public ProblemDataCreator(IPreprocessingContext context) { this.context = context; } public IDataAnalysisProblemData CreateProblemData() { if (context.Data.Rows == 0 || context.Data.Columns == 0) return null; var oldProblemData = context.ProblemData; IDataAnalysisProblemData problemData; if (oldProblemData is RegressionProblemData) { problemData = CreateRegressionData((RegressionProblemData)oldProblemData); } else if (oldProblemData is ClassificationProblemData) { problemData = CreateClassificationData((ClassificationProblemData)oldProblemData); } else if (oldProblemData is ClusteringProblemData) { problemData = CreateClusteringData((ClusteringProblemData)oldProblemData); } else { throw new NotImplementedException("The type of the DataAnalysisProblemData is not supported."); } SetTrainingAndTestPartition(problemData); return problemData; } private IDataAnalysisProblemData CreateRegressionData(RegressionProblemData oldProblemData) { var targetVariable = oldProblemData.TargetVariable; // target variable must be double and must exist in the new dataset return new RegressionProblemData(ExportedDataset, GetDoubleInputVariables(targetVariable), targetVariable, Transformations); } private IDataAnalysisProblemData CreateClassificationData(ClassificationProblemData oldProblemData) { var targetVariable = oldProblemData.TargetVariable; // target variable must be double and must exist in the new dataset return new ClassificationProblemData(ExportedDataset, GetDoubleInputVariables(targetVariable), targetVariable, Transformations); } private IDataAnalysisProblemData CreateClusteringData(ClusteringProblemData oldProblemData) { return new ClusteringProblemData(ExportedDataset, GetDoubleInputVariables(String.Empty), Transformations); } private void SetTrainingAndTestPartition(IDataAnalysisProblemData problemData) { var ppData = context.Data; problemData.TrainingPartition.Start = ppData.TrainingPartition.Start; problemData.TrainingPartition.End = ppData.TrainingPartition.End; problemData.TestPartition.Start = ppData.TestPartition.Start; problemData.TestPartition.End = ppData.TestPartition.End; } private IEnumerable GetDoubleInputVariables(string targetVariable) { var variableNames = new List(); for (int i = 0; i < context.Data.Columns; ++i) { var variableName = context.Data.GetVariableName(i); if (context.Data.VariableHasType(i) && variableName != targetVariable && IsNotConstantInputVariable(context.Data.GetValues(i))) { variableNames.Add(variableName); } } return variableNames; } private bool IsNotConstantInputVariable(IList list) { return context.Data.TrainingPartition.End - context.Data.TrainingPartition.Start > 1 || list.Range() > 0; } } }