#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
namespace HeuristicLab.DataPreprocessing {
[Item("ScatterPlot", "Represents a scatter plot.")]
public class ScatterPlotContent : PreprocessingChartContent {
public string SelectedXVariable { get; set; }
public string SelectedYVariable { get; set; }
public string SelectedColorVariable { get; set; }
public ScatterPlotContent(IFilteredPreprocessingData preprocessingData)
: base(preprocessingData) {
}
public ScatterPlotContent(ScatterPlotContent content, Cloner cloner)
: base(content, cloner) {
this.SelectedXVariable = content.SelectedXVariable;
this.SelectedYVariable = content.SelectedYVariable;
this.SelectedColorVariable = content.SelectedColorVariable;
}
public static new Image StaticItemImage {
get { return HeuristicLab.Common.Resources.VSImageLibrary.Performance; }
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ScatterPlotContent(this, cloner);
}
public ScatterPlot CreateScatterPlot(string variableNameX, string variableNameY, string variableNameColor = "-") {
ScatterPlot scatterPlot = new ScatterPlot();
IList xValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameX));
IList yValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameY));
if (variableNameColor == null || variableNameColor == "-") {
List> points = new List>();
for (int i = 0; i < xValues.Count; i++) {
Point2D point = new Point2D(xValues[i], yValues[i]);
points.Add(point);
}
ScatterPlotDataRow scdr = new ScatterPlotDataRow(variableNameX + " - " + variableNameY, "", points);
scatterPlot.Rows.Add(scdr);
} else {
var colorValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameColor));
var data = xValues.Zip(yValues, (x, y) => new { x, y }).Zip(colorValues, (v, c) => new { v.x, v.y, c }).ToList();
var gradients = ColorGradient.Colors;
int curGradient = 0;
int numColors = colorValues.Distinct().Count();
foreach (var colorValue in colorValues.Distinct()) {
var values = data.Where(x => x.c == colorValue);
var row = new ScatterPlotDataRow(
variableNameX + " - " + variableNameY + " (" + colorValue + ")",
"",
values.Select(v => new Point2D(v.x, v.y)),
new ScatterPlotDataRowVisualProperties() { Color = gradients[curGradient] });
curGradient += gradients.Count / numColors;
scatterPlot.Rows.Add(row);
}
}
return scatterPlot;
}
}
}