#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Drawing; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; namespace HeuristicLab.DataPreprocessing { [Item("ScatterPlot", "Represents a scatter plot.")] public class ScatterPlotContent : PreprocessingChartContent { public string SelectedXVariable { get; set; } public string SelectedYVariable { get; set; } public string SelectedColorVariable { get; set; } public ScatterPlotContent(IFilteredPreprocessingData preprocessingData) : base(preprocessingData) { } public ScatterPlotContent(ScatterPlotContent content, Cloner cloner) : base(content, cloner) { this.SelectedXVariable = content.SelectedXVariable; this.SelectedYVariable = content.SelectedYVariable; this.SelectedColorVariable = content.SelectedColorVariable; } public static new Image StaticItemImage { get { return HeuristicLab.Common.Resources.VSImageLibrary.Performance; } } public override IDeepCloneable Clone(Cloner cloner) { return new ScatterPlotContent(this, cloner); } public ScatterPlot CreateScatterPlot(string variableNameX, string variableNameY, string variableNameColor = "-") { ScatterPlot scatterPlot = new ScatterPlot(); IList xValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameX)); IList yValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameY)); if (variableNameColor == null || variableNameColor == "-") { List> points = new List>(); for (int i = 0; i < xValues.Count; i++) { Point2D point = new Point2D(xValues[i], yValues[i]); points.Add(point); } ScatterPlotDataRow scdr = new ScatterPlotDataRow(variableNameX + " - " + variableNameY, "", points); scatterPlot.Rows.Add(scdr); } else { var colorValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameColor)); var data = xValues.Zip(yValues, (x, y) => new { x, y }).Zip(colorValues, (v, c) => new { v.x, v.y, c }).ToList(); var gradients = ColorGradient.Colors; int curGradient = 0; int numColors = colorValues.Distinct().Count(); foreach (var colorValue in colorValues.Distinct()) { var values = data.Where(x => x.c == colorValue); var row = new ScatterPlotDataRow( variableNameX + " - " + variableNameY + " (" + colorValue + ")", "", values.Select(v => new Point2D(v.x, v.y)), new ScatterPlotDataRowVisualProperties() { Color = gradients[curGradient] }); curGradient += gradients.Count / numColors; scatterPlot.Rows.Add(row); } } return scatterPlot; } } }