#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Common;
namespace HeuristicLab.Algorithms.NSGA2 {
///
/// FastNonDominatedSort as described in: Deb, Pratap, Agrawal and Meyarivan, "A Fast and Elitist Multiobjective
/// Genetic Algorithm: NSGA-II", IEEE Transactions On Evolutionary Computation, Vol. 6, No. 2, April 2002
///
[Item("FastNonDominatedSort", @"FastNonDominatedSort as described in: Deb, Pratap, Agrawal and Meyarivan, ""A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II"", IEEE Transactions On Evolutionary Computation, Vol. 6, No. 2, April 2002")]
[StorableClass]
public class FastNonDominatedSort : SingleSuccessorOperator {
private enum DominationResult { Dominates, IsDominated, IsNonDominated };
public IValueLookupParameter MaximizationParameter {
get { return (IValueLookupParameter)Parameters["Maximization"]; }
}
public IScopeTreeLookupParameter QualitiesParameter {
get { return (IScopeTreeLookupParameter)Parameters["Qualities"]; }
}
public IScopeTreeLookupParameter RankParameter {
get { return (IScopeTreeLookupParameter)Parameters["Rank"]; }
}
[StorableConstructor]
protected FastNonDominatedSort(bool deserializing) : base(deserializing) { }
protected FastNonDominatedSort(FastNonDominatedSort original, Cloner cloner) : base(original, cloner) { }
public FastNonDominatedSort() {
Parameters.Add(new ValueLookupParameter("Maximization", "Whether each objective is maximization or minimization."));
Parameters.Add(new ScopeTreeLookupParameter("Qualities", "The qualities of a solution.", 1));
Parameters.Add(new ScopeTreeLookupParameter("Rank", "The rank of a solution.", 1));
}
public override IOperation Apply() {
BoolArray maximization = MaximizationParameter.ActualValue;
ItemArray qualities = QualitiesParameter.ActualValue;
if (qualities == null) throw new InvalidOperationException(Name + ": No qualities found.");
IScope scope = ExecutionContext.Scope;
int populationSize = scope.SubScopes.Count;
List fronts = new List();
Dictionary> dominatedScopes = new Dictionary>();
int[] dominationCounter = new int[populationSize];
ItemArray rank = new ItemArray(populationSize);
for (int pI = 0; pI < populationSize - 1; pI++) {
IScope p = scope.SubScopes[pI];
if (!dominatedScopes.ContainsKey(p))
dominatedScopes[p] = new List();
for (int qI = pI + 1; qI < populationSize; qI++) {
DominationResult test = Dominates(qualities[pI], qualities[qI], maximization);
if (test == DominationResult.Dominates) {
dominatedScopes[p].Add(qI);
dominationCounter[qI] += 1;
} else if (test == DominationResult.IsDominated) {
dominationCounter[pI] += 1;
if (!dominatedScopes.ContainsKey(scope.SubScopes[qI]))
dominatedScopes.Add(scope.SubScopes[qI], new List());
dominatedScopes[scope.SubScopes[qI]].Add(pI);
}
if (pI == populationSize - 2
&& qI == populationSize - 1
&& dominationCounter[qI] == 0) {
rank[qI] = new IntValue(0);
AddToFront(scope.SubScopes[qI], fronts, 0);
}
}
if (dominationCounter[pI] == 0) {
rank[pI] = new IntValue(0);
AddToFront(p, fronts, 0);
}
}
int i = 0;
while (i < fronts.Count && fronts[i].Count > 0) {
ScopeList nextFront = new ScopeList();
foreach (IScope p in fronts[i]) {
if (dominatedScopes.ContainsKey(p)) {
for (int k = 0; k < dominatedScopes[p].Count; k++) {
int dominatedScope = dominatedScopes[p][k];
dominationCounter[dominatedScope] -= 1;
if (dominationCounter[dominatedScope] == 0) {
rank[dominatedScope] = new IntValue(i + 1);
nextFront.Add(scope.SubScopes[dominatedScope]);
}
}
}
}
i += 1;
fronts.Add(nextFront);
}
RankParameter.ActualValue = rank;
scope.SubScopes.Clear();
for (i = 0; i < fronts.Count; i++) {
Scope frontScope = new Scope("Front " + i);
foreach (var p in fronts[i])
frontScope.SubScopes.Add(p);
if (frontScope.SubScopes.Count > 0)
scope.SubScopes.Add(frontScope);
}
return base.Apply();
}
private DominationResult Dominates(DoubleArray left, DoubleArray right, BoolArray maximizations) {
bool leftIsBetter = false, rightIsBetter = false;
for (int i = 0; i < left.Length; i++) {
if (IsDominated(left[i], right[i], maximizations[i])) rightIsBetter = true;
else if (IsDominated(right[i], left[i], maximizations[i])) leftIsBetter = true;
if (leftIsBetter && rightIsBetter) break;
}
if (leftIsBetter && !rightIsBetter) return DominationResult.Dominates;
if (!leftIsBetter && rightIsBetter) return DominationResult.IsDominated;
return DominationResult.IsNonDominated;
}
private bool IsDominated(double left, double right, bool maximization) {
return maximization && left < right
|| !maximization && left > right;
}
private void AddToFront(IScope p, List fronts, int i) {
if (i == fronts.Count) fronts.Add(new ScopeList());
fronts[i].Add(p);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new FastNonDominatedSort(this, cloner);
}
}
}