#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item("WeightedEuclideanDistance", "A weighted norm function that uses Euclidean distance √(Σ(w[i]²*(p1[i]-p2[i])²))")]
public class WeightedEuclideanDistance : ParameterizedNamedItem, IDistance> {
[Storable]
private double[] weights;
public const string WeightsParameterName = "Weights";
public IValueParameter WeightsParameter {
get { return (IValueParameter) Parameters[WeightsParameterName]; }
}
public DoubleArray Weights {
get { return WeightsParameter.Value; }
set { WeightsParameter.Value = value; }
}
#region HLConstructors & Cloning
[StorableConstructor]
protected WeightedEuclideanDistance(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterParameterEvents();
}
protected WeightedEuclideanDistance(WeightedEuclideanDistance original, Cloner cloner) : base(original, cloner) {
RegisterParameterEvents();
weights = original.weights != null ? original.weights.ToArray() : null;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new WeightedEuclideanDistance(this, cloner);
}
public WeightedEuclideanDistance() {
Parameters.Add(new ValueParameter(WeightsParameterName, "The weights used to modify the euclidean distance.", new DoubleArray(new[] {1.0})));
RegisterParameterEvents();
}
#endregion
public static double GetDistance(IEnumerable point1, IEnumerable point2, IEnumerable weights) {
using (IEnumerator p1Enum = point1.GetEnumerator(), p2Enum = point2.GetEnumerator(), weEnum = weights.GetEnumerator()) {
var sum = 0.0;
while (p1Enum.MoveNext() & p2Enum.MoveNext() & weEnum.MoveNext()) {
var d = p1Enum.Current - p2Enum.Current;
var w = weEnum.Current;
sum += d * d * w * w;
}
if (weEnum.MoveNext() || p1Enum.MoveNext() || p2Enum.MoveNext()) throw new ArgumentException("Weighted Euclidean distance not defined on vectors of different length");
return Math.Sqrt(sum);
}
}
public double Get(IEnumerable a, IEnumerable b) {
return GetDistance(a, b, weights);
}
public IComparer> GetDistanceComparer(IEnumerable item) {
return new DistanceBase>.DistanceComparer(item, this);
}
public double Get(object x, object y) {
return Get((IEnumerable) x, (IEnumerable) y);
}
public IComparer GetDistanceComparer(object item) {
return new DistanceBase>.DistanceComparer((IEnumerable) item, this);
}
public void AdaptToProblemData(IDataAnalysisProblemData problemData) {
Weights = new DoubleArray(problemData.AllowedInputVariables.Select(v => Weights.ElementNames.Contains(v) ? GetWeight(v) : 1).ToArray())
{ElementNames = problemData.AllowedInputVariables};
}
public void Initialize(IDataAnalysisProblemData problemData) {
if (Weights.Length != problemData.AllowedInputVariables.Count()) throw new ArgumentException("Number of Weights does not match the number of input variables");
weights = Weights.ElementNames.All(v => v == null || v.Equals(string.Empty)) ?
Weights.ToArray() :
problemData.AllowedInputVariables.Select(GetWeight).ToArray();
}
private double GetWeight(string v) {
var w = Weights;
var names = w.ElementNames.ToArray();
for (var i = 0; i < w.Length; i++) if (names[i].Equals(v)) return w[i];
throw new ArgumentException("weigth for " + v + " was requested but not specified.");
}
private void RegisterParameterEvents() {
WeightsParameter.ValueChanged += OnWeightsArrayChanged;
WeightsParameter.Value.ItemChanged += OnWeightChanged;
}
private void OnWeightChanged(object sender, EventArgs e) {
WeightsParameter.Value.ItemChanged -= OnWeightChanged;
Weights[e.Value] = Math.Max(0, Weights[e.Value]);
WeightsParameter.Value.ItemChanged -= OnWeightChanged;
}
private void OnWeightsArrayChanged(object sender, EventArgs e) {
for (var i = 0; i < Weights.Length; i++)
Weights[i] = Math.Max(0, Weights[i]);
WeightsParameter.Value.ItemChanged += OnWeightChanged;
}
}
}