[9270] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9270] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Data;
|
---|
| 25 | using HeuristicLab.Operators;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 32 | [Item("NcaSolutionCreator", "Creates an NCA solution with a given model and some given data.")]
|
---|
| 33 | [StorableClass]
|
---|
| 34 | public class NcaSolutionCreator : SingleSuccessorOperator, INcaSolutionCreator {
|
---|
| 35 |
|
---|
| 36 | public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
|
---|
| 37 | get { return (ILookupParameter<IClassificationProblemData>)Parameters["ProblemData"]; }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | public ILookupParameter<INcaModel> NcaModelParameter {
|
---|
| 41 | get { return (ILookupParameter<INcaModel>)Parameters["NcaModel"]; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public ILookupParameter<INcaClassificationSolution> NcaSolutionParameter {
|
---|
| 45 | get { return (ILookupParameter<INcaClassificationSolution>)Parameters["NcaSolution"]; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
| 49 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | [StorableConstructor]
|
---|
| 53 | protected NcaSolutionCreator(bool deserializing) : base(deserializing) { }
|
---|
| 54 | protected NcaSolutionCreator(NcaSolutionCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 55 | public NcaSolutionCreator()
|
---|
| 56 | : base() {
|
---|
| 57 | Parameters.Add(new LookupParameter<IClassificationProblemData>("ProblemData", "The classification problem data."));
|
---|
| 58 | Parameters.Add(new LookupParameter<INcaModel>("NcaModel", "The NCA model that should be created."));
|
---|
| 59 | Parameters.Add(new LookupParameter<INcaClassificationSolution>("NcaSolution", "The created NCA solution."));
|
---|
| 60 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The results collection to store the results."));
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 64 | return new NcaSolutionCreator(this, cloner);
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public override IOperation Apply() {
|
---|
| 68 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 69 | var model = NcaModelParameter.ActualValue;
|
---|
| 70 | var results = ResultsParameter.ActualValue;
|
---|
| 71 |
|
---|
| 72 | var s = model.CreateClassificationSolution(problemData);
|
---|
| 73 | NcaSolutionParameter.ActualValue = s;
|
---|
| 74 |
|
---|
| 75 | if (!results.ContainsKey("Solution")) {
|
---|
| 76 | results.Add(new Result("Solution", "The NCA classification solution", s));
|
---|
| 77 | results.Add(new Result("Accuracy (training)",
|
---|
| 78 | "The accuracy of the NCA solution on the training partition.",
|
---|
| 79 | new DoubleValue(s.TrainingAccuracy)));
|
---|
| 80 | results.Add(new Result("Accuracy (test)",
|
---|
| 81 | "The accuracy of the NCA solution on the test partition.",
|
---|
| 82 | new DoubleValue(s.TestAccuracy)));
|
---|
| 83 | } else {
|
---|
| 84 | results["Solution"].Value = s;
|
---|
| 85 | results["Accuracy (training)"].Value = new DoubleValue(s.TrainingAccuracy);
|
---|
| 86 | results["Accuracy (test)"].Value = new DoubleValue(s.TestAccuracy);
|
---|
| 87 | }
|
---|
| 88 | return base.Apply();
|
---|
| 89 | }
|
---|
| 90 | }
|
---|
| 91 | }
|
---|