#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HEAL.Attic;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Linear discriminant analysis classification algorithm.
///
[Item("Linear Discriminant Analysis (LDA)", "Linear discriminant analysis classification algorithm (wrapper for ALGLIB).")]
[Creatable(CreatableAttribute.Categories.DataAnalysisClassification, Priority = 100)]
[StorableType("032E1FDE-D140-47BF-8EB1-D63EC33B0629")]
public sealed class LinearDiscriminantAnalysis : FixedDataAnalysisAlgorithm {
private const string LinearDiscriminantAnalysisSolutionResultName = "Linear discriminant analysis solution";
[StorableConstructor]
private LinearDiscriminantAnalysis(StorableConstructorFlag _) : base(_) { }
private LinearDiscriminantAnalysis(LinearDiscriminantAnalysis original, Cloner cloner)
: base(original, cloner) {
}
public LinearDiscriminantAnalysis()
: base() {
Problem = new ClassificationProblem();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new LinearDiscriminantAnalysis(this, cloner);
}
#region Fisher LDA
protected override void Run(CancellationToken cancellationToken) {
var solution = CreateLinearDiscriminantAnalysisSolution(Problem.ProblemData);
Results.Add(new Result(LinearDiscriminantAnalysisSolutionResultName, "The linear discriminant analysis.", solution));
}
public static IClassificationSolution CreateLinearDiscriminantAnalysisSolution(IClassificationProblemData problemData) {
var dataset = problemData.Dataset;
string targetVariable = problemData.TargetVariable;
IEnumerable allowedInputVariables = problemData.AllowedInputVariables;
IEnumerable rows = problemData.TrainingIndices;
int nClasses = problemData.ClassNames.Count();
var doubleVariableNames = allowedInputVariables.Where(dataset.VariableHasType).ToArray();
var factorVariableNames = allowedInputVariables.Where(dataset.VariableHasType).ToArray();
double[,] inputMatrix = dataset.ToArray(doubleVariableNames.Concat(new string[] { targetVariable }), rows);
var factorVariables = dataset.GetFactorVariableValues(factorVariableNames, rows);
var factorMatrix = dataset.ToArray(factorVariables, rows);
inputMatrix = factorMatrix.HorzCat(inputMatrix);
if (inputMatrix.ContainsNanOrInfinity())
throw new NotSupportedException("Linear discriminant analysis does not support NaN or infinity values in the input dataset.");
// change class values into class index
int targetVariableColumn = inputMatrix.GetLength(1) - 1;
List classValues = problemData.ClassValues.OrderBy(x => x).ToList();
for (int row = 0; row < inputMatrix.GetLength(0); row++) {
inputMatrix[row, targetVariableColumn] = classValues.IndexOf(inputMatrix[row, targetVariableColumn]);
}
int info;
double[] w;
alglib.fisherlda(inputMatrix, inputMatrix.GetLength(0), inputMatrix.GetLength(1) - 1, nClasses, out info, out w);
if (info < 1) throw new ArgumentException("Error in calculation of linear discriminant analysis solution");
var nFactorCoeff = factorMatrix.GetLength(1);
var tree = LinearModelToTreeConverter.CreateTree(factorVariables, w.Take(nFactorCoeff).ToArray(),
doubleVariableNames, w.Skip(nFactorCoeff).Take(doubleVariableNames.Length).ToArray());
var model = CreateDiscriminantFunctionModel(tree, new SymbolicDataAnalysisExpressionTreeLinearInterpreter(), problemData, rows);
SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
return solution;
}
#endregion
private static SymbolicDiscriminantFunctionClassificationModel CreateDiscriminantFunctionModel(ISymbolicExpressionTree tree,
ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
IClassificationProblemData problemData,
IEnumerable rows) {
var model = new SymbolicDiscriminantFunctionClassificationModel(problemData.TargetVariable, tree, interpreter, new AccuracyMaximizationThresholdCalculator());
model.RecalculateModelParameters(problemData, rows);
return model;
}
}
}