#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
* and the BEACON Center for the Study of Evolution in Action.
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
// relative error loss is a special case of weighted absolute error loss with weights = (1/target)
[StorableClass]
[Item("Relative error loss", "")]
public sealed class RelativeErrorLoss : Item, ILossFunction {
public RelativeErrorLoss() { }
public double GetLoss(IEnumerable target, IEnumerable pred) {
var targetEnum = target.GetEnumerator();
var predEnum = pred.GetEnumerator();
double s = 0;
while (targetEnum.MoveNext() & predEnum.MoveNext()) {
double res = targetEnum.Current - predEnum.Current;
s += Math.Abs(res) * Math.Abs(1.0 / targetEnum.Current);
}
if (targetEnum.MoveNext() | predEnum.MoveNext())
throw new ArgumentException("target and pred have different lengths");
return s;
}
public IEnumerable GetLossGradient(IEnumerable target, IEnumerable pred) {
var targetEnum = target.GetEnumerator();
var predEnum = pred.GetEnumerator();
while (targetEnum.MoveNext() & predEnum.MoveNext()) {
// sign(res) * abs(1 / target)
var res = targetEnum.Current - predEnum.Current;
if (res > 0) yield return 1.0 / Math.Abs(targetEnum.Current);
else if (res < 0) yield return -1.0 / Math.Abs(targetEnum.Current);
else yield return 0.0;
}
if (targetEnum.MoveNext() | predEnum.MoveNext())
throw new ArgumentException("target and pred have different lengths");
}
// targetArr and predArr are not changed by LineSearch
public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) {
if (targetArr.Length != predArr.Length)
throw new ArgumentException("target and pred have different lengths");
// line search for relative error
// weighted median (weight = 1/target)
int nRows = endIdx - startIdx + 1; // startIdx and endIdx are inclusive
if (nRows == 1) return targetArr[idx[startIdx]] - predArr[idx[startIdx]]; // res
else if (nRows == 2) {
// weighted average of two residuals
var w0 = Math.Abs(1.0 / targetArr[idx[startIdx]]);
var w1 = Math.Abs(1.0 / targetArr[idx[endIdx]]);
if (w0 > w1) {
return targetArr[idx[startIdx]] - predArr[idx[startIdx]];
} else if (w0 < w1) {
return targetArr[idx[endIdx]] - predArr[idx[endIdx]];
} else {
// same weight -> return average of both residuals
return ((targetArr[idx[startIdx]] - predArr[idx[startIdx]]) + (targetArr[idx[endIdx]] - predArr[idx[endIdx]])) / 2;
}
} else {
// create an array of key-value pairs to be sorted (instead of using Array.Sort(res, weights))
var res_w = new KeyValuePair[nRows];
var totalWeight = 0.0;
for (int i = startIdx; i <= endIdx; i++) {
int row = idx[i];
var res = targetArr[row] - predArr[row];
var w = Math.Abs(1.0 / targetArr[row]);
res_w[i - startIdx] = new KeyValuePair(res, w);
totalWeight += w;
}
// TODO: improve efficiency (find median without sort)
res_w.StableSort((a, b) => Math.Sign(a.Key - b.Key));
int k = 0;
double sum = totalWeight - res_w[k].Value; // total - first weight
while (sum > totalWeight / 2) {
k++;
sum -= res_w[k].Value;
}
return res_w[k].Key;
}
}
#region item implementation
[StorableConstructor]
private RelativeErrorLoss(bool deserializing) : base(deserializing) { }
private RelativeErrorLoss(RelativeErrorLoss original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new RelativeErrorLoss(this, cloner);
}
#endregion
}
}