#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * and the BEACON Center for the Study of Evolution in Action. * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { // loss function for quantile regression // Generalized Boosted Models - A Guide To The gbm Package, Greg Ridgeway, August 2007, page 11 [StorableClass] [Item("QuantileRegressionloss", "Loss function for quantile regression")] public sealed class QuantileRegressionLoss : ParameterizedNamedItem, ILossFunction { public IFixedValueParameter AlphaParameter { get { return (IFixedValueParameter)Parameters["Alpha"]; } } public double Alpha { get { return AlphaParameter.Value.Value; } set { if (value <= 0.0 || value >= 1.0) throw new ArgumentException("Valid values for alpha: 0 < alpha < 1"); AlphaParameter.Value.Value = value; } } public QuantileRegressionLoss() : base("QuantileRegressionLoss", "Loss function for quantile regression") { Parameters.Add(new FixedValueParameter("Alpha", new PercentValue(0.9))); } public double GetLoss(IEnumerable target, IEnumerable pred) { var targetEnum = target.GetEnumerator(); var predEnum = pred.GetEnumerator(); var alpha = Alpha; double leftSum = 0; double rightsum = 0; while (targetEnum.MoveNext() & predEnum.MoveNext()) { double res = targetEnum.Current - predEnum.Current; if (res > 0) leftSum += res; else rightsum += -res; } if (targetEnum.MoveNext() | predEnum.MoveNext()) throw new ArgumentException("target and pred have differing lengths"); return alpha * leftSum + (1 - alpha) * rightsum; } public IEnumerable GetLossGradient(IEnumerable target, IEnumerable pred) { var targetEnum = target.GetEnumerator(); var predEnum = pred.GetEnumerator(); var alpha = AlphaParameter.Value.Value; while (targetEnum.MoveNext() & predEnum.MoveNext()) { var res = targetEnum.Current - predEnum.Current; if (res > 0) yield return alpha; else if (res < 0) yield return -(1.0 - alpha); else yield return 0.0; } if (targetEnum.MoveNext() | predEnum.MoveNext()) throw new ArgumentException("target and pred have differing lengths"); } // targetArr and predArr are not changed by LineSearch public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) { if (targetArr.Length != predArr.Length) throw new ArgumentException("target and pred have differing lengths"); // Quantile() is allocating an array anyway // It would be possible to pre-allocated an array for the residuals if Quantile() would allow specification of a sub-range int nRows = endIdx - startIdx + 1; var res = new double[nRows]; for (int i = startIdx; i <= endIdx; i++) { var row = idx[i]; res[i - startIdx] = targetArr[row] - predArr[row]; } return res.Quantile(Alpha); } #region item implementation [StorableConstructor] private QuantileRegressionLoss(bool deserializing) : base(deserializing) { } private QuantileRegressionLoss(QuantileRegressionLoss original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new QuantileRegressionLoss(this, cloner); } #endregion public override bool CanChangeName { get { return false; } } public override bool CanChangeDescription { get { return false; } } } }