[12868] | 1 | #region License Information |
---|
| 2 | /* HeuristicLab |
---|
[17097] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) |
---|
[12868] | 4 | * and the BEACON Center for the Study of Evolution in Action. |
---|
| 5 | * |
---|
| 6 | * This file is part of HeuristicLab. |
---|
| 7 | * |
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify |
---|
| 9 | * it under the terms of the GNU General Public License as published by |
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 11 | * (at your option) any later version. |
---|
| 12 | * |
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful, |
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 16 | * GNU General Public License for more details. |
---|
| 17 | * |
---|
| 18 | * You should have received a copy of the GNU General Public License |
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>. |
---|
| 20 | */ |
---|
| 21 | #endregion |
---|
| 22 | |
---|
[14327] | 23 | using System; |
---|
[12868] | 24 | using System.Collections.Generic; |
---|
[14027] | 25 | using System.Linq; |
---|
[12868] | 26 | using HeuristicLab.Common; |
---|
| 27 | using HeuristicLab.Core; |
---|
[17097] | 28 | using HEAL.Attic; |
---|
[12868] | 29 | using HeuristicLab.Problems.DataAnalysis; |
---|
| 30 | |
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis { |
---|
[17097] | 32 | [StorableType("1BF7BEFB-6739-48AA-89BC-B632E72D148C")] |
---|
[12868] | 33 | // this class is used as a surrogate for persistence of an actual GBT model |
---|
| 34 | // since the actual GBT model would be very large when persisted we only store all necessary information to |
---|
| 35 | // recalculate the actual GBT model on demand |
---|
| 36 | [Item("Gradient boosted tree model", "")] |
---|
[14027] | 37 | public sealed class GradientBoostedTreesModelSurrogate : RegressionModel, IGradientBoostedTreesModel { |
---|
[12868] | 38 | // don't store the actual model! |
---|
[14327] | 39 | // the actual model is only recalculated when necessary |
---|
| 40 | private readonly Lazy<IGradientBoostedTreesModel> actualModel; |
---|
| 41 | private IGradientBoostedTreesModel ActualModel { |
---|
| 42 | get { return actualModel.Value; } |
---|
| 43 | } |
---|
[12868] | 44 | |
---|
| 45 | [Storable] |
---|
| 46 | private readonly IRegressionProblemData trainingProblemData; |
---|
| 47 | [Storable] |
---|
| 48 | private readonly uint seed; |
---|
| 49 | [Storable] |
---|
[13184] | 50 | private ILossFunction lossFunction; |
---|
[12868] | 51 | [Storable] |
---|
| 52 | private double r; |
---|
| 53 | [Storable] |
---|
| 54 | private double m; |
---|
| 55 | [Storable] |
---|
| 56 | private double nu; |
---|
| 57 | [Storable] |
---|
| 58 | private int iterations; |
---|
| 59 | [Storable] |
---|
| 60 | private int maxSize; |
---|
| 61 | |
---|
| 62 | |
---|
[14027] | 63 | public override IEnumerable<string> VariablesUsedForPrediction { |
---|
[14327] | 64 | get { |
---|
| 65 | return ActualModel.Models.SelectMany(x => x.VariablesUsedForPrediction).Distinct().OrderBy(x => x); |
---|
| 66 | } |
---|
[14027] | 67 | } |
---|
| 68 | |
---|
[12868] | 69 | [StorableConstructor] |
---|
[17097] | 70 | private GradientBoostedTreesModelSurrogate(StorableConstructorFlag _) : base(_) { |
---|
[14327] | 71 | actualModel = new Lazy<IGradientBoostedTreesModel>(() => RecalculateModel()); |
---|
| 72 | } |
---|
[12868] | 73 | |
---|
| 74 | private GradientBoostedTreesModelSurrogate(GradientBoostedTreesModelSurrogate original, Cloner cloner) |
---|
| 75 | : base(original, cloner) { |
---|
[14327] | 76 | IGradientBoostedTreesModel clonedModel = null; |
---|
| 77 | if (original.ActualModel != null) clonedModel = cloner.Clone(original.ActualModel); |
---|
| 78 | actualModel = new Lazy<IGradientBoostedTreesModel>(CreateLazyInitFunc(clonedModel)); // only capture clonedModel in the closure |
---|
[12868] | 79 | |
---|
| 80 | this.trainingProblemData = cloner.Clone(original.trainingProblemData); |
---|
[13184] | 81 | this.lossFunction = cloner.Clone(original.lossFunction); |
---|
[12868] | 82 | this.seed = original.seed; |
---|
| 83 | this.iterations = original.iterations; |
---|
| 84 | this.maxSize = original.maxSize; |
---|
| 85 | this.r = original.r; |
---|
| 86 | this.m = original.m; |
---|
| 87 | this.nu = original.nu; |
---|
| 88 | } |
---|
| 89 | |
---|
[14327] | 90 | private Func<IGradientBoostedTreesModel> CreateLazyInitFunc(IGradientBoostedTreesModel clonedModel) { |
---|
| 91 | return () => { |
---|
| 92 | return clonedModel == null ? RecalculateModel() : clonedModel; |
---|
| 93 | }; |
---|
| 94 | } |
---|
| 95 | |
---|
[12868] | 96 | // create only the surrogate model without an actual model |
---|
[14027] | 97 | public GradientBoostedTreesModelSurrogate(IRegressionProblemData trainingProblemData, uint seed, |
---|
| 98 | ILossFunction lossFunction, int iterations, int maxSize, double r, double m, double nu) |
---|
| 99 | : base(trainingProblemData.TargetVariable, "Gradient boosted tree model", string.Empty) { |
---|
[12868] | 100 | this.trainingProblemData = trainingProblemData; |
---|
| 101 | this.seed = seed; |
---|
[13184] | 102 | this.lossFunction = lossFunction; |
---|
[12868] | 103 | this.iterations = iterations; |
---|
| 104 | this.maxSize = maxSize; |
---|
| 105 | this.r = r; |
---|
| 106 | this.m = m; |
---|
| 107 | this.nu = nu; |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | // wrap an actual model in a surrograte |
---|
[14027] | 111 | public GradientBoostedTreesModelSurrogate(IRegressionProblemData trainingProblemData, uint seed, |
---|
| 112 | ILossFunction lossFunction, int iterations, int maxSize, double r, double m, double nu, |
---|
| 113 | IGradientBoostedTreesModel model) |
---|
[13184] | 114 | : this(trainingProblemData, seed, lossFunction, iterations, maxSize, r, m, nu) { |
---|
[14327] | 115 | actualModel = new Lazy<IGradientBoostedTreesModel>(() => model); |
---|
[12868] | 116 | } |
---|
| 117 | |
---|
| 118 | public override IDeepCloneable Clone(Cloner cloner) { |
---|
| 119 | return new GradientBoostedTreesModelSurrogate(this, cloner); |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | // forward message to actual model (recalculate model first if necessary) |
---|
[14027] | 123 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) { |
---|
[14327] | 124 | return ActualModel.GetEstimatedValues(dataset, rows); |
---|
[12868] | 125 | } |
---|
| 126 | |
---|
[14027] | 127 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) { |
---|
[12868] | 128 | return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone()); |
---|
| 129 | } |
---|
| 130 | |
---|
[13184] | 131 | private IGradientBoostedTreesModel RecalculateModel() { |
---|
[12868] | 132 | return GradientBoostedTreesAlgorithmStatic.TrainGbm(trainingProblemData, lossFunction, maxSize, nu, r, m, iterations, seed).Model; |
---|
| 133 | } |
---|
[13184] | 134 | |
---|
| 135 | public IEnumerable<IRegressionModel> Models { |
---|
| 136 | get { |
---|
[14327] | 137 | return ActualModel.Models; |
---|
[13184] | 138 | } |
---|
| 139 | } |
---|
| 140 | |
---|
| 141 | public IEnumerable<double> Weights { |
---|
| 142 | get { |
---|
[14327] | 143 | return ActualModel.Weights; |
---|
[13184] | 144 | } |
---|
| 145 | } |
---|
[12868] | 146 | } |
---|
| 147 | } |
---|