#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item(Name = "MeanConst", Description = "Constant mean function for Gaussian processes.")] public sealed class MeanConst : ParameterizedNamedItem, IMeanFunction { public IValueParameter ValueParameter { get { return (IValueParameter)Parameters["Value"]; } } [StorableConstructor] private MeanConst(bool deserializing) : base(deserializing) { } private MeanConst(MeanConst original, Cloner cloner) : base(original, cloner) { } public MeanConst() : base() { this.name = ItemName; this.description = ItemDescription; Parameters.Add(new OptionalValueParameter("Value", "The constant value for the constant mean function.")); } public override IDeepCloneable Clone(Cloner cloner) { return new MeanConst(this, cloner); } public int GetNumberOfParameters(int numberOfVariables) { return ValueParameter.Value != null ? 0 : 1; } public void SetParameter(double[] p) { double c; GetParameters(p, out c); ValueParameter.Value = new DoubleValue(c); } private void GetParameters(double[] p, out double c) { if (ValueParameter.Value == null) { c = p[0]; } else { if (p.Length > 0) throw new ArgumentException( "The length of the parameter vector does not match the number of free parameters for the constant mean function.", "p"); c = ValueParameter.Value.Value; } } public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, int[] columnIndices) { double c; GetParameters(p, out c); var mf = new ParameterizedMeanFunction(); mf.Mean = (x, i) => c; mf.Gradient = (x, i, k) => { if (k > 0) throw new ArgumentException(); return 1.0; }; return mf; } } }