#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
[Item("CMAMutator", "Mutates the solution vector according to the CMA-ES scheme.")]
[StorableClass]
public sealed class CMAMutator : SingleSuccessorOperator, IStochasticOperator, ICMAManipulator, IIterationBasedOperator {
public Type CMAType {
get { return typeof(CMAParameters); }
}
#region Parameter Properties
public ILookupParameter RandomParameter {
get { return (ILookupParameter)Parameters["Random"]; }
}
public ILookupParameter PopulationSizeParameter {
get { return (ILookupParameter)Parameters["PopulationSize"]; }
}
public ILookupParameter IterationsParameter {
get { return (ILookupParameter)Parameters["Iterations"]; }
}
public IValueLookupParameter MaximumIterationsParameter {
get { return (IValueLookupParameter)Parameters["MaximumIterations"]; }
}
public ILookupParameter MeanParameter {
get { return (ILookupParameter)Parameters["Mean"]; }
}
public IScopeTreeLookupParameter RealVectorParameter {
get { return (IScopeTreeLookupParameter)Parameters["RealVector"]; }
}
public IValueLookupParameter BoundsParameter {
get { return (IValueLookupParameter)Parameters["Bounds"]; }
}
public ILookupParameter StrategyParametersParameter {
get { return (ILookupParameter)Parameters["StrategyParameters"]; }
}
public IFixedValueParameter MaxTriesParameter {
get { return (IFixedValueParameter)Parameters["MaxTries"]; }
}
public IFixedValueParameter TruncateAtBoundsParameter {
get { return (IFixedValueParameter)Parameters["TruncateAtBounds"]; }
}
#endregion
[StorableConstructor]
private CMAMutator(bool deserializing) : base(deserializing) { }
private CMAMutator(CMAMutator original, Cloner cloner) : base(original, cloner) { }
public CMAMutator()
: base() {
Parameters.Add(new LookupParameter("Random", "The random number generator to use."));
Parameters.Add(new LookupParameter("PopulationSize", "The population size (lambda) determines how many offspring should be created."));
Parameters.Add(new LookupParameter("Iterations", "The current iteration that is being processed."));
Parameters.Add(new ValueLookupParameter("MaximumIterations", "The maximum number of iterations to be processed."));
Parameters.Add(new LookupParameter("Mean", "The current mean solution."));
Parameters.Add(new ScopeTreeLookupParameter("RealVector", "The solution vector of real values."));
Parameters.Add(new ValueLookupParameter("Bounds", "The bounds for the dimensions."));
Parameters.Add(new LookupParameter("StrategyParameters", "The CMA-ES strategy parameters used for mutation."));
Parameters.Add(new FixedValueParameter("MaxTries", "The maximum number of tries a mutation should be performed if it was outside the bounds.", new IntValue(100)));
Parameters.Add(new FixedValueParameter("TruncateAtBounds", "Whether the point should be truncated at the bounds if none of the tries resulted in a point within the bounds.", new BoolValue(true)));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CMAMutator(this, cloner);
}
public override IOperation Apply() {
var maxTries = MaxTriesParameter.Value.Value;
var truncateAtBounds = TruncateAtBoundsParameter.Value.Value;
var random = RandomParameter.ActualValue;
var lambda = PopulationSizeParameter.ActualValue.Value;
var xmean = MeanParameter.ActualValue;
var arx = RealVectorParameter.ActualValue;
var sp = StrategyParametersParameter.ActualValue;
var iterations = IterationsParameter.ActualValue.Value;
var initialIterations = sp.InitialIterations;
var bounds = BoundsParameter.ActualValue;
if (arx == null || arx.Length == 0) {
arx = new ItemArray(lambda);
for (int i = 0; i < lambda; i++) arx[i] = new RealVector(xmean.Length);
RealVectorParameter.ActualValue = arx;
}
var nd = new NormalDistributedRandom(random, 0, 1);
var length = arx[0].Length;
for (int i = 0; i < lambda; i++) {
int tries = 0;
bool inRange;
if (initialIterations > iterations) {
for (int k = 0; k < length; k++) {
do {
arx[i][k] = xmean[k] + sp.Sigma * sp.D[k] * nd.NextDouble();
inRange = bounds[k % bounds.Rows, 0] <= arx[i][k] && arx[i][k] <= bounds[k % bounds.Rows, 1];
if (!inRange) tries++;
} while (!inRange && tries < maxTries);
if (!inRange && truncateAtBounds) {
if (bounds[k % bounds.Rows, 0] > arx[i][k]) arx[i][k] = bounds[k % bounds.Rows, 0];
else if (bounds[k % bounds.Rows, 1] < arx[i][k]) arx[i][k] = bounds[k % bounds.Rows, 1];
}
}
} else {
var B = sp.B;
do {
tries++;
inRange = true;
var artmp = new double[length];
for (int k = 0; k < length; ++k) {
artmp[k] = sp.D[k] * nd.NextDouble();
}
for (int k = 0; k < length; k++) {
var sum = 0.0;
for (int j = 0; j < length; j++)
sum += B[k, j] * artmp[j];
arx[i][k] = xmean[k] + sp.Sigma * sum; // m + sig * Normal(0,C)
if (bounds[k % bounds.Rows, 0] > arx[i][k] || arx[i][k] > bounds[k % bounds.Rows, 1])
inRange = false;
}
} while (!inRange && tries < maxTries);
if (!inRange && truncateAtBounds) {
for (int k = 0; k < length; k++) {
if (bounds[k % bounds.Rows, 0] > arx[i][k]) arx[i][k] = bounds[k % bounds.Rows, 0];
else if (bounds[k % bounds.Rows, 1] < arx[i][k]) arx[i][k] = bounds[k % bounds.Rows, 1];
}
}
}
}
return base.Apply();
}
}
}