#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.TradeRules
{
[Item("TradeRules", "Represents a trade rules in a symbolic regression problem.")]
[StorableClass]
[Creatable("Problems")]
public class TradeRulesProblem : TradeRulesAbstractProblem, IRegressionProblem
{
private const double PunishmentFactor = 10;
private const int InitialMaximumTreeDepth = 8;
private const int InitialMaximumTreeLength = 25;
private const string EstimationLimitsParameterName = "EstimationLimits";
private const string EstimationLimitsParameterDescription = "The limits for the estimated value that can be returned by the symbolic regression model.";
#region parameter properties
public IFixedValueParameter EstimationLimitsParameter
{
get { return (IFixedValueParameter)Parameters[EstimationLimitsParameterName]; }
}
#endregion
#region properties
public DoubleLimit EstimationLimits
{
get { return EstimationLimitsParameter.Value; }
}
#endregion
[StorableConstructor]
protected TradeRulesProblem(bool deserializing) : base(deserializing) { }
protected TradeRulesProblem(TradeRulesProblem original, Cloner cloner)
: base(original, cloner)
{
RegisterEventHandlers();
}
public override IDeepCloneable Clone(Cloner cloner) { return new TradeRulesProblem(this, cloner); }
public TradeRulesProblem()
: base(new RegressionProblemData(), new EvaluatorTradeRules(), new SymbolicDataAnalysisExpressionTreeCreator())
{
Parameters.Add(new FixedValueParameter(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
EstimationLimitsParameter.Hidden = true;
Maximization.Value = true;
MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
RegisterEventHandlers();
ConfigureGrammarSymbols();
InitializeOperators();
UpdateEstimationLimits();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization()
{
RegisterEventHandlers();
// compatibility
bool changed = false;
if (!Operators.OfType().Any())
{
Operators.Add(new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer());
changed = true;
}
if (!Operators.OfType().Any())
{
Operators.Add(new SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer());
changed = true;
}
if (changed)
{
ParameterizeOperators();
}
}
private void RegisterEventHandlers()
{
SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
}
private void ConfigureGrammarSymbols()
{
var grammar = SymbolicExpressionTreeGrammar as Grammar;
if (grammar != null) grammar.ConfigureAsDefaultRegressionGrammar();
}
private void InitializeOperators()
{
Operators.Add(new TradeRulesSingleObjectiveTrainingBestSolutionAnalyzer());
Operators.Add(new TradeRulesSingleObjectiveValidationBestSolutionAnalyzer());
Operators.Add(new SymbolicRegressionSingleObjectiveOverfittingAnalyzer());
Operators.Add(new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer());
Operators.Add(new SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer());
ParameterizeOperators();
}
private void UpdateEstimationLimits()
{
if (ProblemData.TrainingIndices.Any())
{
var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
var mean = targetValues.Average();
var range = targetValues.Max() - targetValues.Min();
EstimationLimits.Upper = mean + PunishmentFactor * range;
EstimationLimits.Lower = mean - PunishmentFactor * range;
}
else
{
EstimationLimits.Upper = double.MaxValue;
EstimationLimits.Lower = double.MinValue;
}
}
protected override void OnProblemDataChanged()
{
base.OnProblemDataChanged();
UpdateEstimationLimits();
}
protected override void ParameterizeOperators()
{
base.ParameterizeOperators();
if (Parameters.ContainsKey(EstimationLimitsParameterName))
{
var operators = Parameters.OfType().Select(p => p.Value).OfType().Union(Operators);
foreach (var op in operators.OfType())
{
op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
}
}
}
}
}