#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Functions; using HeuristicLab.DataAnalysis; namespace HeuristicLab.StructureIdentification { public class ClassificationMatrixEvaluator : GPEvaluatorBase { private const double EPSILON = 1.0E-6; private double[] classesArr; private double[] thresholds; private IntMatrixData matrix; public override string Description { get { return @"Calculates the classifcation matrix of the model."; } } public ClassificationMatrixEvaluator() : base() { AddVariableInfo(new VariableInfo("ClassificationMatrix", "The resulting classification matrix of the model", typeof(IntMatrixData), VariableKind.New)); AddVariableInfo(new VariableInfo("TargetClassValues", "The original class values of target variable (for instance negative=0 and positive=1).", typeof(ItemList), VariableKind.In)); } public override IOperation Apply(IScope scope) { ItemList classes = GetVariableValue>("TargetClassValues", scope, true); classesArr = new double[classes.Count]; for(int i = 0; i < classesArr.Length; i++) classesArr[i] = classes[i].Data; Array.Sort(classesArr); thresholds = new double[classes.Count - 1]; for(int i = 0; i < classesArr.Length - 1; i++) { thresholds[i] = (classesArr[i] + classesArr[i + 1]) / 2.0; } matrix = GetVariableValue("ClassificationMatrix", scope, false, false); if(matrix == null) { matrix = new IntMatrixData(new int[classesArr.Length, classesArr.Length]); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("ClassificationMatrix"), matrix)); } return base.Apply(scope); } public override void Evaluate(int start, int end) { int nSamples = end - start; for(int sample = start; sample < end; sample++) { double est = GetEstimatedValue(sample); double origClass = GetOriginalValue(sample); int estClassIndex = -1; // if estimation is lower than the smallest threshold value -> estimated class is the lower class if(est < thresholds[0]) estClassIndex = 0; // if estimation is larger (or equal) than the largest threshold value -> estimated class is the upper class else if(est >= thresholds[thresholds.Length - 1]) estClassIndex = classesArr.Length - 1; else { // otherwise the estimated class is the class which upper threshold is larger than the estimated value for(int k = 0; k < thresholds.Length; k++) { if(thresholds[k] > est) { estClassIndex = k; break; } } } SetOriginalValue(sample, classesArr[estClassIndex]); int origClassIndex = -1; for(int i = 0; i < classesArr.Length; i++) { if(IsEqual(origClass, classesArr[i])) origClassIndex = i; } matrix.Data[origClassIndex, estClassIndex]++; } } private bool IsEqual(double x, double y) { return Math.Abs(x - y) < EPSILON; } } }