#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Operators;
using HeuristicLab.Random;
using HeuristicLab.Data;
using HeuristicLab.Constraints;
using System.Diagnostics;
namespace HeuristicLab.GP {
///
/// Implementation of a homologous uniform crossover operator as described in:
/// R. Poli and W. B. Langdon. On the Search Properties of Different Crossover Operators in Genetic Programming.
/// In Proceedings of Genetic Programming '98, Madison, Wisconsin, 1998.
///
public class UniformCrossover : SizeConstrictedGPCrossoverBase {
// internal datastructure to represent crossover points
private class CrossoverPoint {
public IFunctionTree Parent0;
public IFunctionTree Parent1;
public int ChildIndex;
public bool IsInternal;
}
public override string Description {
get {
return @"Uniform crossover as defined by Poli and Langdon";
}
}
internal override IFunctionTree Cross(TreeGardener gardener, MersenneTwister random, IFunctionTree tree0, IFunctionTree tree1, int maxTreeSize, int maxTreeHeight) {
List allowedCrossOverPoints = new List();
GetCrossOverPoints(gardener, tree0, tree1, allowedCrossOverPoints);
// iterate through the list of crossover points and swap nodes with p=0.5
foreach (CrossoverPoint crossoverPoint in allowedCrossOverPoints) {
if (random.NextDouble() < 0.5) {
if (crossoverPoint.IsInternal) {
ExchangeNodes(crossoverPoint);
} else {
SwapSubtrees(crossoverPoint);
}
}
}
return tree0;
}
private void GetCrossOverPoints(TreeGardener gardener, IFunctionTree branch0, IFunctionTree branch1, List crossoverPoints) {
if (branch0.SubTrees.Count != branch1.SubTrees.Count) return; // branches have to have same number of sub-trees to be valid crossover points
// iterate over all sub-trees
for (int i = 0; i < branch0.SubTrees.Count; i++) {
IFunctionTree currentSubTree0 = branch0.SubTrees[i];
IFunctionTree currentSubTree1 = branch1.SubTrees[i];
// when the current sub-tree in branch1 can be attached as a child of branch0
// and the sub-tree of branch0 can be attached as child of branch1.
// note: we have to check both cases because either branch0 or branch1 can end up in the result tree
if (gardener.GetAllowedSubFunctions(branch0.Function, i).Contains(currentSubTree1.Function) &&
gardener.GetAllowedSubFunctions(branch1.Function, i).Contains(currentSubTree0.Function)) {
// and the sub-tree is at the border of the common region
if (currentSubTree0.SubTrees.Count != currentSubTree1.SubTrees.Count) {
// then we have found a valid crossover point
CrossoverPoint p = new CrossoverPoint();
p.ChildIndex = i;
p.Parent0 = branch0;
p.Parent1 = branch1;
p.IsInternal = false;
crossoverPoints.Add(p);
} else {
// when the sub-trees are not on the border of the common region
// we also have to check if the children of the current sub-trees of branch0 and branch1 can be exchanged
if (CanHaveSubTrees(gardener, currentSubTree0, currentSubTree1.SubTrees) &&
CanHaveSubTrees(gardener, currentSubTree1, currentSubTree0.SubTrees)) {
CrossoverPoint p = new CrossoverPoint();
p.ChildIndex = i;
p.Parent0 = branch0;
p.Parent1 = branch1;
p.IsInternal = true;
crossoverPoints.Add(p);
}
}
}
GetCrossOverPoints(gardener, currentSubTree0, currentSubTree1, crossoverPoints);
}
}
private bool CanHaveSubTrees(TreeGardener gardener, IFunctionTree parent, IList subTrees) {
for (int i = 0; i < subTrees.Count; i++) {
if (!gardener.GetAllowedSubFunctions(parent.Function, i).Contains(subTrees[i].Function)) return false;
}
return true;
}
private void ExchangeNodes(CrossoverPoint crossoverPoint) {
IFunctionTree parent0 = crossoverPoint.Parent0;
IFunctionTree parent1 = crossoverPoint.Parent1;
int childIndex = crossoverPoint.ChildIndex;
IFunctionTree branch0 = crossoverPoint.Parent0.SubTrees[childIndex];
IFunctionTree branch1 = crossoverPoint.Parent1.SubTrees[childIndex];
// exchange the branches in the parent
parent0.RemoveSubTree(childIndex);
parent0.InsertSubTree(childIndex, branch1);
parent1.RemoveSubTree(childIndex);
parent1.InsertSubTree(childIndex, branch0);
ExchangeChildren(branch0, branch1);
}
private void SwapSubtrees(CrossoverPoint crossoverPoint) {
IFunctionTree parent0 = crossoverPoint.Parent0;
IFunctionTree parent1 = crossoverPoint.Parent1;
int childIndex = crossoverPoint.ChildIndex;
IFunctionTree branch0 = crossoverPoint.Parent0.SubTrees[childIndex];
IFunctionTree branch1 = crossoverPoint.Parent1.SubTrees[childIndex];
// insert branch1 into parent0 replacing branch0
parent0.RemoveSubTree(childIndex);
parent0.InsertSubTree(childIndex, branch1);
// insert branch0 into parent1 replacing branch1
parent1.RemoveSubTree(childIndex);
parent1.InsertSubTree(childIndex, branch0);
}
private void ExchangeChildren(IFunctionTree branch0, IFunctionTree branch1) {
List branch0Children = new List(branch0.SubTrees); // lists to backup subtrees
List branch1Children = new List(branch1.SubTrees);
// remove children of branch0 and branch1
while (branch1.SubTrees.Count > 0) branch1.RemoveSubTree(0);
while (branch0.SubTrees.Count > 0) branch0.RemoveSubTree(0);
// add original children of branch0 to branch1
foreach (IFunctionTree subTree in branch0Children) {
branch1.AddSubTree(subTree);
}
// add original children of branch1 to branch0
foreach (IFunctionTree subTree in branch1Children) {
branch0.AddSubTree(subTree);
}
}
}
}