#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Windows.Forms;
using HeuristicLab.PluginInfrastructure;
using System.Net;
using System.ServiceModel;
using HeuristicLab.CEDMA.DB.Interfaces;
using HeuristicLab.CEDMA.DB;
using System.ServiceModel.Description;
using System.Linq;
using HeuristicLab.CEDMA.Core;
using HeuristicLab.GP.StructureIdentification;
using HeuristicLab.Data;
using HeuristicLab.Core;
namespace HeuristicLab.CEDMA.Server {
public abstract class DispatcherBase :IDispatcher {
public enum ModelComplexity { Low, Medium, High };
public enum Algorithm { StandardGP };
private IStore store;
private ModelComplexity[] possibleComplexities = new ModelComplexity[] { ModelComplexity.Low, ModelComplexity.Medium, ModelComplexity.High };
private Dictionary possibleAlgorithms = new Dictionary() {
{LearningTask.Classification, new Algorithm[] {}},
{LearningTask.Regression, new Algorithm[] { Algorithm.StandardGP }},
{LearningTask.TimeSeries, new Algorithm[] { }}
};
public DispatcherBase(IStore store) {
this.store = store;
}
public Execution GetNextJob() {
// find and select a dataset
var dataSetVar = new HeuristicLab.CEDMA.DB.Interfaces.Variable("DataSet");
var dataSetQuery = new Statement[] {
new Statement(dataSetVar, Ontology.PredicateInstanceOf, Ontology.TypeDataSet)
};
Entity[] datasets = store.Query("?DataSet <" + Ontology.PredicateInstanceOf.Uri + "> <" + Ontology.TypeDataSet.Uri + "> .")
.Select(x => (Entity)x.Get("DataSet"))
.ToArray();
// no datasets => do nothing
if (datasets.Length == 0) return null;
Entity dataSetEntity = SelectDataSet(datasets);
DataSet dataSet = new DataSet(store, dataSetEntity);
int targetVariable = SelectTargetVariable(dataSet, dataSet.Problem.AllowedInputVariables.ToArray());
Algorithm selectedAlgorithm = SelectAlgorithm(dataSet, targetVariable, possibleAlgorithms[dataSet.Problem.LearningTask]);
string targetVariableName = dataSet.Problem.GetVariableName(targetVariable);
ModelComplexity selectedComplexity = SelectComplexity(dataSet, targetVariable, selectedAlgorithm, possibleComplexities);
Execution exec = CreateExecution(dataSet.Problem, targetVariable, selectedAlgorithm, selectedComplexity);
if (exec != null) {
exec.DataSetEntity = dataSetEntity;
exec.TargetVariable = targetVariableName;
}
return exec;
}
public abstract Entity SelectDataSet(Entity[] datasets);
public abstract int SelectTargetVariable(DataSet dataSet, int[] targetVariables);
public abstract Algorithm SelectAlgorithm(DataSet dataSet, int targetVariable, Algorithm[] possibleAlgorithms);
public abstract ModelComplexity SelectComplexity(DataSet dataSet, int targetVariable, Algorithm algorithm, ModelComplexity[] possibleComplexities);
private Execution CreateExecution(Problem problem, int targetVariable, Algorithm algorithm, ModelComplexity complexity) {
switch (algorithm) {
case Algorithm.StandardGP: {
return CreateStandardGpExecution(problem, targetVariable, complexity);
}
default: {
return null;
}
}
}
private Execution CreateStandardGpExecution(Problem problem, int targetVariable, ModelComplexity complexity) {
ProblemInjector probInjector = new ProblemInjector(problem);
probInjector.TargetVariable = targetVariable;
StandardGP sgp = new StandardGP();
sgp.SetSeedRandomly = true;
sgp.MaxGenerations = 2;
sgp.PopulationSize = 100;
sgp.Elites = 1;
sgp.ProblemInjector = probInjector;
int maxTreeHeight = 10;
int maxTreeSize = 100;
switch (complexity) {
case ModelComplexity.Low: {
maxTreeHeight = 5;
maxTreeSize = 20;
break;
}
case ModelComplexity.Medium: {
maxTreeHeight = 10;
maxTreeSize = 100;
break;
}
case ModelComplexity.High: {
maxTreeHeight = 12;
maxTreeSize = 200;
break;
}
}
sgp.MaxTreeHeight = maxTreeHeight;
sgp.MaxTreeSize = maxTreeSize;
Execution exec = new Execution(sgp.Engine);
exec.Description = "StandardGP - Complexity: " + complexity;
return exec;
}
}
}