#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* The implementation is inspired by the implementation in JAVA of SHADE algorithm https://sites.google.com/site/tanaberyoji/software/SHADE1.0.1_CEC2013.zip?attredirects=0&d=1
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.TestFunctions;
using HeuristicLab.Random;
using System;
using System.Collections.Generic;
using System.Threading;
namespace HeuristicLab.Algorithms.Shade {
[Item("Success-History Based Parameter Adaptation for DE (SHADE)", "A self-adaptive version of differential evolution")]
[StorableClass]
[Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 400)]
public class Shade : BasicAlgorithm {
public Func, double> Evaluation;
public override Type ProblemType {
get { return typeof(SingleObjectiveTestFunctionProblem); }
}
public new SingleObjectiveTestFunctionProblem Problem {
get { return (SingleObjectiveTestFunctionProblem)base.Problem; }
set { base.Problem = value; }
}
private readonly IRandom _random = new MersenneTwister();
private int evals;
private int pop_size;
private double arc_rate;
private int arc_size;
private double p_best_rate;
private int memory_size;
private double[][] pop;
private double[] fitness;
private double[][] children;
private double[] children_fitness;
private double[] bsf_solution;
private double bsf_fitness = 1e+30;
private double[,] archive;
private int num_arc_inds = 0;
#region ParameterNames
private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
private const string SeedParameterName = "Seed";
private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
private const string CrossoverProbabilityParameterName = "CrossoverProbability";
private const string PopulationSizeParameterName = "PopulationSize";
private const string ScalingFactorParameterName = "ScalingFactor";
private const string ValueToReachParameterName = "ValueToReach";
private const string ArchiveRateParameterName = "ArchiveRate";
private const string MemorySizeParameterName = "MemorySize";
private const string BestRateParameterName = "BestRate";
#endregion
#region ParameterProperties
public IFixedValueParameter MaximumEvaluationsParameter {
get { return (IFixedValueParameter)Parameters[MaximumEvaluationsParameterName]; }
}
public IFixedValueParameter SeedParameter {
get { return (IFixedValueParameter)Parameters[SeedParameterName]; }
}
public FixedValueParameter SetSeedRandomlyParameter {
get { return (FixedValueParameter)Parameters[SetSeedRandomlyParameterName]; }
}
private ValueParameter PopulationSizeParameter {
get { return (ValueParameter)Parameters[PopulationSizeParameterName]; }
}
public ValueParameter CrossoverProbabilityParameter {
get { return (ValueParameter)Parameters[CrossoverProbabilityParameterName]; }
}
public ValueParameter ScalingFactorParameter {
get { return (ValueParameter)Parameters[ScalingFactorParameterName]; }
}
public ValueParameter ValueToReachParameter {
get { return (ValueParameter)Parameters[ValueToReachParameterName]; }
}
public ValueParameter ArchiveRateParameter {
get { return (ValueParameter)Parameters[ArchiveRateParameterName]; }
}
public ValueParameter MemorySizeParameter {
get { return (ValueParameter)Parameters[MemorySizeParameterName]; }
}
public ValueParameter BestRateParameter {
get { return (ValueParameter)Parameters[BestRateParameterName]; }
}
#endregion
#region Properties
public int MaximumEvaluations {
get { return MaximumEvaluationsParameter.Value.Value; }
set { MaximumEvaluationsParameter.Value.Value = value; }
}
public Double CrossoverProbability {
get { return CrossoverProbabilityParameter.Value.Value; }
set { CrossoverProbabilityParameter.Value.Value = value; }
}
public Double ScalingFactor {
get { return ScalingFactorParameter.Value.Value; }
set { ScalingFactorParameter.Value.Value = value; }
}
public int Seed {
get { return SeedParameter.Value.Value; }
set { SeedParameter.Value.Value = value; }
}
public bool SetSeedRandomly {
get { return SetSeedRandomlyParameter.Value.Value; }
set { SetSeedRandomlyParameter.Value.Value = value; }
}
public IntValue PopulationSize {
get { return PopulationSizeParameter.Value; }
set { PopulationSizeParameter.Value = value; }
}
public Double ValueToReach {
get { return ValueToReachParameter.Value.Value; }
set { ValueToReachParameter.Value.Value = value; }
}
public Double ArchiveRate {
get { return ArchiveRateParameter.Value.Value; }
set { ArchiveRateParameter.Value.Value = value; }
}
public IntValue MemorySize {
get { return MemorySizeParameter.Value; }
set { MemorySizeParameter.Value = value; }
}
public Double BestRate {
get { return BestRateParameter.Value.Value; }
set { BestRateParameter.Value.Value = value; }
}
#endregion
#region ResultsProperties
private double ResultsBestQuality {
get { return ((DoubleValue)Results["Best Quality"].Value).Value; }
set { ((DoubleValue)Results["Best Quality"].Value).Value = value; }
}
private double VTRBestQuality {
get { return ((DoubleValue)Results["VTR"].Value).Value; }
set { ((DoubleValue)Results["VTR"].Value).Value = value; }
}
private RealVector ResultsBestSolution {
get { return (RealVector)Results["Best Solution"].Value; }
set { Results["Best Solution"].Value = value; }
}
private int ResultsEvaluations {
get { return ((IntValue)Results["Evaluations"].Value).Value; }
set { ((IntValue)Results["Evaluations"].Value).Value = value; }
}
private int ResultsIterations {
get { return ((IntValue)Results["Iterations"].Value).Value; }
set { ((IntValue)Results["Iterations"].Value).Value = value; }
}
private DataTable ResultsQualities {
get { return ((DataTable)Results["Qualities"].Value); }
}
private DataRow ResultsQualitiesBest {
get { return ResultsQualities.Rows["Best Quality"]; }
}
#endregion
[StorableConstructor]
protected Shade(bool deserializing) : base(deserializing) { }
protected Shade(Shade original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new Shade(this, cloner);
}
public Shade() {
Parameters.Add(new FixedValueParameter(MaximumEvaluationsParameterName, "", new IntValue(Int32.MaxValue)));
Parameters.Add(new ValueParameter(PopulationSizeParameterName, "The size of the population of solutions.", new IntValue(75)));
Parameters.Add(new ValueParameter(ValueToReachParameterName, "Value to reach (VTR) parameter", new DoubleValue(0.00000001)));
Parameters.Add(new ValueParameter(ArchiveRateParameterName, "Archive rate parameter", new DoubleValue(2.0)));
Parameters.Add(new ValueParameter(MemorySizeParameterName, "Memory size parameter", new IntValue(0)));
Parameters.Add(new ValueParameter(BestRateParameterName, "Best rate parameter", new DoubleValue(0.1)));
}
protected override void Run(CancellationToken cancellationToken) {
// Set up the results display
Results.Add(new Result("Iterations", new IntValue(0)));
Results.Add(new Result("Evaluations", new IntValue(0)));
Results.Add(new Result("Best Solution", new RealVector()));
Results.Add(new Result("Best Quality", new DoubleValue(double.NaN)));
Results.Add(new Result("VTR", new DoubleValue(double.NaN)));
var table = new DataTable("Qualities");
table.Rows.Add(new DataRow("Best Quality"));
Results.Add(new Result("Qualities", table));
this.evals = 0;
int archive_size = (int)Math.Round(ArchiveRateParameter.Value.Value * PopulationSize.Value);
int problem_size = Problem.ProblemSize.Value;
int pop_size = PopulationSizeParameter.Value.Value;
this.arc_rate = ArchiveRateParameter.Value.Value;
this.arc_size = (int)Math.Round(this.arc_rate * pop_size);
this.p_best_rate = BestRateParameter.Value.Value;
this.memory_size = MemorySizeParameter.Value.Value;
this.pop = new double[pop_size][];
this.fitness = new double[pop_size];
this.children = new double[pop_size][];
this.children_fitness = new double[pop_size];
this.bsf_solution = new double[problem_size];
this.bsf_fitness = 1e+30;
this.archive = new double[arc_size, Problem.ProblemSize.Value];
this.num_arc_inds = 0;
double[,] populationOld = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
double[,] mutationPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
double[,] trialPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
double[] bestPopulation = new double[Problem.ProblemSize.Value];
double[] bestPopulationIteration = new double[Problem.ProblemSize.Value];
double[,] archive = new double[archive_size, Problem.ProblemSize.Value];
// //for external archive
int rand_arc_ind;
int num_success_params;
double[] success_sf = new double[PopulationSizeParameter.Value.Value];
double[] success_cr = new double[PopulationSizeParameter.Value.Value];
double[] dif_fitness = new double[PopulationSizeParameter.Value.Value];
double[] fitness = new double[PopulationSizeParameter.Value.Value];
// the contents of M_f and M_cr are all initialiezed 0.5
double[] memory_sf = new double[MemorySizeParameter.Value.Value];
double[] memory_cr = new double[MemorySizeParameter.Value.Value];
for(int i = 0; i < MemorySizeParameter.Value.Value; i++) {
memory_sf[i] = 0.5;
memory_cr[i] = 0.5;
}
//memory index counter
int memory_pos = 0;
double temp_sum_sf1, temp_sum_sf2, temp_sum_cr1, temp_sum_cr2, temp_sum, temp_weight;
//for new parameters sampling
double mu_sf, mu_cr;
int rand_mem_index;
double[] pop_sf = new double[PopulationSizeParameter.Value.Value];
double[] pop_cr = new double[PopulationSizeParameter.Value.Value];
//for current-to-pbest/1
int p_best_ind;
double m = PopulationSizeParameter.Value.Value * BestRateParameter.Value.Value;
int p_num = (int)Math.Round(m);
int[] sorted_array = new int[PopulationSizeParameter.Value.Value];
double[] sorted_fitness = new double[PopulationSizeParameter.Value.Value];
//initialize the population
populationOld = makeNewIndividuals();
//evaluate the best member after the intialiazation
//the idea is to select first member and after that to check the others members from the population
int best_index = 0;
double[] populationRow = new double[Problem.ProblemSize.Value];
bestPopulation = getMatrixRow(populationOld, best_index);
RealVector bestPopulationVector = new RealVector(bestPopulation);
double bestPopulationValue = Obj(bestPopulationVector);
fitness[best_index] = bestPopulationValue;
RealVector selectionVector;
RealVector trialVector;
double qtrial;
for(var i = 0; i < PopulationSizeParameter.Value.Value; i++) {
populationRow = getMatrixRow(populationOld, i);
trialVector = new RealVector(populationRow);
qtrial = Obj(trialVector);
fitness[i] = qtrial;
if(qtrial > bestPopulationValue) {
bestPopulationVector = new RealVector(populationRow);
bestPopulationValue = qtrial;
best_index = i;
}
}
int iterations = 1;
// Loop until iteration limit reached or canceled.
// todo replace with a function
// && bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value
while(ResultsEvaluations < MaximumEvaluations
&& !cancellationToken.IsCancellationRequested &&
bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value) {
for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) sorted_array[i] = i;
for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) sorted_fitness[i] = fitness[i];
Quicksort(sorted_fitness, 0, PopulationSizeParameter.Value.Value - 1, sorted_array);
for(int target = 0; target < PopulationSizeParameter.Value.Value; target++) {
rand_mem_index = (int)(_random.NextDouble() * MemorySizeParameter.Value.Value);
mu_sf = memory_sf[rand_mem_index];
mu_cr = memory_cr[rand_mem_index];
//generate CR_i and repair its value
if(mu_cr == -1) {
pop_cr[target] = 0;
} else {
pop_cr[target] = gauss(mu_cr, 0.1);
if(pop_cr[target] > 1) pop_cr[target] = 1;
else if(pop_cr[target] < 0) pop_cr[target] = 0;
}
//generate F_i and repair its value
do {
pop_sf[target] = cauchy_g(mu_sf, 0.1);
} while(pop_sf[target] <= 0);
if(pop_sf[target] > 1) pop_sf[target] = 1;
//p-best individual is randomly selected from the top pop_size * p_i members
p_best_ind = sorted_array[(int)(_random.NextDouble() * p_num)];
trialPopulation = operateCurrentToPBest1BinWithArchive(populationOld, trialPopulation, target, p_best_ind, pop_sf[target], pop_cr[target]);
}
for(int i = 0; i < pop_size; i++) {
trialVector = new RealVector(getMatrixRow(trialPopulation, i));
children_fitness[i] = Obj(trialVector);
}
//update bfs solution
for(var i = 0; i < PopulationSizeParameter.Value.Value; i++) {
populationRow = getMatrixRow(populationOld, i);
qtrial = fitness[i];
if(qtrial > bestPopulationValue) {
bestPopulationVector = new RealVector(populationRow);
bestPopulationValue = qtrial;
best_index = i;
}
}
num_success_params = 0;
//generation alternation
for(int i = 0; i < pop_size; i++) {
if(children_fitness[i] == fitness[i]) {
fitness[i] = children_fitness[i];
for(int j = 0; j < problem_size; j++) populationOld[i, j] = trialPopulation[i, j];
} else if(children_fitness[i] < fitness[i]) {
//parent vectors x_i which were worse than the trial vectors u_i are preserved
if(arc_size > 1) {
if(num_arc_inds < arc_size) {
for(int j = 0; j < problem_size; j++) this.archive[num_arc_inds, j] = populationOld[i, j];
num_arc_inds++;
}
//Whenever the size of the archive exceeds, randomly selected elements are deleted to make space for the newly inserted elements
else {
rand_arc_ind = (int)(_random.NextDouble() * arc_size);
for(int j = 0; j < problem_size; j++) this.archive[rand_arc_ind, j] = populationOld[i, j];
}
}
dif_fitness[num_success_params] = Math.Abs(fitness[i] - children_fitness[i]);
fitness[i] = children_fitness[i];
for(int j = 0; j < problem_size; j++) populationOld[i, j] = trialPopulation[i, j];
//successful parameters are preserved in S_F and S_CR
success_sf[num_success_params] = pop_sf[i];
success_cr[num_success_params] = pop_cr[i];
num_success_params++;
}
}
if(num_success_params > 0) {
temp_sum_sf1 = 0;
temp_sum_sf2 = 0;
temp_sum_cr1 = 0;
temp_sum_cr2 = 0;
temp_sum = 0;
temp_weight = 0;
for(int i = 0; i < num_success_params; i++) temp_sum += dif_fitness[i];
//weighted lehmer mean
for(int i = 0; i < num_success_params; i++) {
temp_weight = dif_fitness[i] / temp_sum;
temp_sum_sf1 += temp_weight * success_sf[i] * success_sf[i];
temp_sum_sf2 += temp_weight * success_sf[i];
temp_sum_cr1 += temp_weight * success_cr[i] * success_cr[i];
temp_sum_cr2 += temp_weight * success_cr[i];
}
memory_sf[memory_pos] = temp_sum_sf1 / temp_sum_sf2;
if(temp_sum_cr2 == 0 || memory_cr[memory_pos] == -1) {
memory_cr[memory_pos] = -1;
} else {
memory_cr[memory_pos] = temp_sum_cr1 / temp_sum_cr2;
}
//increment the counter
memory_pos++;
if(memory_pos >= memory_size) memory_pos = 0;
}
//update the best candidate
for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) {
selectionVector = new RealVector(getMatrixRow(populationOld, i));
var quality = fitness[i];
if(quality < bestPopulationValue) {
bestPopulationVector = (RealVector)selectionVector.Clone();
bestPopulationValue = quality;
}
}
iterations = iterations + 1;
//update the results
ResultsEvaluations = evals;
ResultsIterations = iterations;
ResultsBestSolution = bestPopulationVector;
ResultsBestQuality = bestPopulationValue;
//update the results in view
if(iterations % 10 == 0) ResultsQualitiesBest.Values.Add(bestPopulationValue);
if(bestPopulationValue < Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value) {
VTRBestQuality = bestPopulationValue;
}
}
}
public override bool SupportsPause { get { return false; } } // TODO (can we pause?)
//evaluate the vector
public double Obj(RealVector x) {
evals = evals + 1;
if(Problem.Maximization.Value)
return -Problem.Evaluator.Evaluate(x);
return Problem.Evaluator.Evaluate(x);
}
// Get ith row from the matrix
public double[] getMatrixRow(double[,] Mat, int i) {
double[] tmp = new double[Mat.GetUpperBound(1) + 1];
for(int j = 0; j <= Mat.GetUpperBound(1); j++) {
tmp[j] = Mat[i, j];
}
return tmp;
}
/*
Return random value from Cauchy distribution with mean "mu" and variance "gamma"
http://www.sat.t.u-tokyo.ac.jp/~omi/random_variables_generation.html#Cauchy
*/
private double cauchy_g(double mu, double gamma) {
return mu + gamma * Math.Tan(Math.PI * (_random.NextDouble() - 0.5));
}
/*
Return random value from normal distribution with mean "mu" and variance "gamma"
http://www.sat.t.u-tokyo.ac.jp/~omi/random_variables_generation.html#Gauss
*/
private double gauss(double mu, double sigma) {
return mu + sigma * Math.Sqrt(-2.0 * Math.Log(_random.NextDouble())) * Math.Sin(2.0 * Math.PI * _random.NextDouble());
}
private double[,] makeNewIndividuals() {
//problem variables
var dim = Problem.ProblemSize.Value;
var lb = Problem.Bounds[0, 0];
var ub = Problem.Bounds[0, 1];
var range = ub - lb;
double[,] population = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
//create initial population
//population is a matrix of size PopulationSize*ProblemSize
for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) {
for(int j = 0; j < Problem.ProblemSize.Value; j++) {
population[i, j] = _random.NextDouble() * range + lb;
}
}
return population;
}
private static void Quicksort(double[] elements, int left, int right, int[] index) {
int i = left, j = right;
double pivot = elements[(left + right) / 2];
double tmp_var = 0;
int tmp_index = 0;
while(i <= j) {
while(elements[i].CompareTo(pivot) < 0) {
i++;
}
while(elements[j].CompareTo(pivot) > 0) {
j--;
}
if(i <= j) {
// Swap
tmp_var = elements[i];
elements[i] = elements[j];
elements[j] = tmp_var;
tmp_index = index[i];
index[i] = index[j];
index[j] = tmp_index;
i++;
j--;
}
}
// Recursive calls
if(left < j) {
Quicksort(elements, left, j, index);
}
if(i < right) {
Quicksort(elements, i, right, index);
}
}
// current to best selection scheme with archive
// analyze how the archive is implemented
private double[,] operateCurrentToPBest1BinWithArchive(double[,] pop, double[,] children, int target, int p_best_individual, double scaling_factor, double cross_rate) {
int r1, r2;
int num_arc_inds = 0;
var lb = Problem.Bounds[0, 0];
var ub = Problem.Bounds[0, 1];
do {
r1 = (int)(_random.NextDouble() * PopulationSizeParameter.Value.Value);
} while(r1 == target);
do {
r2 = (int)(_random.NextDouble() * (PopulationSizeParameter.Value.Value + num_arc_inds));
} while((r2 == target) || (r2 == r1));
int random_variable = (int)(_random.NextDouble() * Problem.ProblemSize.Value);
if(r2 >= PopulationSizeParameter.Value.Value) {
r2 -= PopulationSizeParameter.Value.Value;
for(int i = 0; i < Problem.ProblemSize.Value; i++) {
if((_random.NextDouble() < cross_rate) || (i == random_variable)) children[target, i] = pop[target, i] + scaling_factor * (pop[p_best_individual, i] - pop[target, i]) + scaling_factor * (pop[r1, i] - archive[r2, i]);
else children[target, i] = pop[target, i];
}
} else {
for(int i = 0; i < Problem.ProblemSize.Value; i++) {
if((_random.NextDouble() < cross_rate) || (i == random_variable)) children[target, i] = pop[target, i] + scaling_factor * (pop[p_best_individual, i] - pop[target, i]) + scaling_factor * (pop[r1, i] - pop[r2, i]);
else children[target, i] = pop[target, i];
}
}
for(int i = 0; i < Problem.ProblemSize.Value; i++) {
if(children[target, i] < lb) children[target, i] = (lb + pop[target, i]) / 2.0;
else if(children[target, i] > ub) children[target, i] = (ub + pop[target, i]) / 2.0;
}
return children;
}
}
}