#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
* Implementation is based on jMetal framework https://github.com/jMetal/jMetal
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.TestFunctions;
using HeuristicLab.Random;
using System;
using System.Collections.Generic;
using System.Threading;
namespace HeuristicLab.Algorithms.DifferentialEvolution
{
[Item("Differential Evolution (DE)", "A differential evolution algorithm.")]
[StorableClass]
[Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 400)]
public class DifferentialEvolution : BasicAlgorithm
{
public Func, double> Evaluation;
public override Type ProblemType
{
get { return typeof(SingleObjectiveTestFunctionProblem); }
}
public new SingleObjectiveTestFunctionProblem Problem
{
get { return (SingleObjectiveTestFunctionProblem)base.Problem; }
set { base.Problem = value; }
}
private readonly IRandom _random = new MersenneTwister();
private int evals;
#region ParameterNames
private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
private const string SeedParameterName = "Seed";
private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
private const string CrossoverProbabilityParameterName = "CrossoverProbability";
private const string PopulationSizeParameterName = "PopulationSize";
private const string ScalingFactorParameterName = "ScalingFactor";
private const string ValueToReachParameterName = "ValueToReach";
#endregion
#region ParameterProperties
public IFixedValueParameter MaximumEvaluationsParameter
{
get { return (IFixedValueParameter)Parameters[MaximumEvaluationsParameterName]; }
}
public IFixedValueParameter SeedParameter
{
get { return (IFixedValueParameter)Parameters[SeedParameterName]; }
}
public FixedValueParameter SetSeedRandomlyParameter
{
get { return (FixedValueParameter)Parameters[SetSeedRandomlyParameterName]; }
}
private ValueParameter PopulationSizeParameter
{
get { return (ValueParameter)Parameters[PopulationSizeParameterName]; }
}
public ValueParameter CrossoverProbabilityParameter
{
get { return (ValueParameter)Parameters[CrossoverProbabilityParameterName]; }
}
public ValueParameter ScalingFactorParameter
{
get { return (ValueParameter)Parameters[ScalingFactorParameterName]; }
}
public ValueParameter ValueToReachParameter
{
get { return (ValueParameter)Parameters[ValueToReachParameterName]; }
}
#endregion
#region Properties
public int MaximumEvaluations
{
get { return MaximumEvaluationsParameter.Value.Value; }
set { MaximumEvaluationsParameter.Value.Value = value; }
}
public Double CrossoverProbability
{
get { return CrossoverProbabilityParameter.Value.Value; }
set { CrossoverProbabilityParameter.Value.Value = value; }
}
public Double ScalingFactor
{
get { return ScalingFactorParameter.Value.Value; }
set { ScalingFactorParameter.Value.Value = value; }
}
public int Seed
{
get { return SeedParameter.Value.Value; }
set { SeedParameter.Value.Value = value; }
}
public bool SetSeedRandomly
{
get { return SetSeedRandomlyParameter.Value.Value; }
set { SetSeedRandomlyParameter.Value.Value = value; }
}
public IntValue PopulationSize
{
get { return PopulationSizeParameter.Value; }
set { PopulationSizeParameter.Value = value; }
}
public Double ValueToReach
{
get { return ValueToReachParameter.Value.Value; }
set { ValueToReachParameter.Value.Value = value; }
}
#endregion
#region ResultsProperties
private double ResultsBestQuality
{
get { return ((DoubleValue)Results["Best Quality"].Value).Value; }
set { ((DoubleValue)Results["Best Quality"].Value).Value = value; }
}
private double VTRBestQuality
{
get { return ((DoubleValue)Results["VTR"].Value).Value; }
set { ((DoubleValue)Results["VTR"].Value).Value = value; }
}
private RealVector ResultsBestSolution
{
get { return (RealVector)Results["Best Solution"].Value; }
set { Results["Best Solution"].Value = value; }
}
private int ResultsEvaluations
{
get { return ((IntValue)Results["Evaluations"].Value).Value; }
set { ((IntValue)Results["Evaluations"].Value).Value = value; }
}
private int ResultsIterations
{
get { return ((IntValue)Results["Iterations"].Value).Value; }
set { ((IntValue)Results["Iterations"].Value).Value = value; }
}
private DataTable ResultsQualities
{
get { return ((DataTable)Results["Qualities"].Value); }
}
private DataRow ResultsQualitiesBest
{
get { return ResultsQualities.Rows["Best Quality"]; }
}
#endregion
[StorableConstructor]
protected DifferentialEvolution(bool deserializing) : base(deserializing) { }
protected DifferentialEvolution(DifferentialEvolution original, Cloner cloner)
: base(original, cloner)
{
}
public override IDeepCloneable Clone(Cloner cloner)
{
return new DifferentialEvolution(this, cloner);
}
public DifferentialEvolution()
{
Parameters.Add(new FixedValueParameter(MaximumEvaluationsParameterName, "", new IntValue(Int32.MaxValue)));
Parameters.Add(new FixedValueParameter(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
Parameters.Add(new ValueParameter(PopulationSizeParameterName, "The size of the population of solutions.", new IntValue(100)));
Parameters.Add(new ValueParameter(CrossoverProbabilityParameterName, "The value for crossover rate", new DoubleValue(0.88)));
Parameters.Add(new ValueParameter(ScalingFactorParameterName, "The value for scaling factor", new DoubleValue(0.47)));
Parameters.Add(new ValueParameter(ValueToReachParameterName, "Value to reach (VTR) parameter", new DoubleValue(0.00000001)));
}
protected override void Run(CancellationToken cancellationToken)
{
// Set up the results display
Results.Add(new Result("Iterations", new IntValue(0)));
Results.Add(new Result("Evaluations", new IntValue(0)));
Results.Add(new Result("Best Solution", new RealVector()));
Results.Add(new Result("Best Quality", new DoubleValue(double.NaN)));
Results.Add(new Result("VTR", new DoubleValue(double.NaN)));
var table = new DataTable("Qualities");
table.Rows.Add(new DataRow("Best Quality"));
Results.Add(new Result("Qualities", table));
//problem variables
var dim = Problem.ProblemSize.Value;
var lb = Problem.Bounds[0, 0];
var ub = Problem.Bounds[0, 1];
var range = ub - lb;
this.evals = 0;
double[,] populationOld = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
double[,] mutationPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
double[,] trialPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
double[] bestPopulation = new double[Problem.ProblemSize.Value];
double[] bestPopulationIteration = new double[Problem.ProblemSize.Value];
//create initial population
//population is a matrix of size PopulationSize*ProblemSize
for (int i = 0; i < PopulationSizeParameter.Value.Value; i++)
{
for (int j = 0; j < Problem.ProblemSize.Value; j++)
{
populationOld[i, j] = _random.NextDouble() * range + lb;
}
}
//evaluate the best member after the intialiazation
//the idea is to select first member and after that to check the others members from the population
int best_index = 0;
double[] populationRow = new double[Problem.ProblemSize.Value];
double[] qualityPopulation = new double[PopulationSizeParameter.Value.Value];
bestPopulation = getMatrixRow(populationOld, best_index);
RealVector bestPopulationVector = new RealVector(bestPopulation);
double bestPopulationValue = Obj(bestPopulationVector);
qualityPopulation[best_index] = bestPopulationValue;
RealVector selectionVector;
RealVector trialVector;
double qtrial;
for (var i = 1; i < PopulationSizeParameter.Value.Value; i++)
{
populationRow = getMatrixRow(populationOld, i);
trialVector = new RealVector(populationRow);
qtrial = Obj(trialVector);
qualityPopulation[i] = qtrial;
if (qtrial > bestPopulationValue)
{
bestPopulationVector = new RealVector(populationRow);
bestPopulationValue = qtrial;
best_index = i;
}
}
int iterations = 1;
// Loop until iteration limit reached or canceled.
// todo replace with a function
// && bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value
while (ResultsEvaluations < MaximumEvaluations
&& !cancellationToken.IsCancellationRequested
&& (bestPopulationValue - Problem.BestKnownQuality.Value) > ValueToReachParameter.Value.Value)
{
//mutation DE/rand/1/bin; classic DE
for (int i = 0; i < PopulationSizeParameter.Value.Value; i++)
{
int r0, r1, r2;
//assure the selected vectors r0, r1 and r2 are different
do
{
r0 = _random.Next(0, PopulationSizeParameter.Value.Value);
} while (r0 == i);
do
{
r1 = _random.Next(0, PopulationSizeParameter.Value.Value);
} while (r1 == i || r1 == r0);
do
{
r2 = _random.Next(0, PopulationSizeParameter.Value.Value);
} while (r2 == i || r2 == r0 || r2 == r1);
for (int j = 0; j < getMatrixRow(mutationPopulation, i).Length; j++)
{
mutationPopulation[i, j] = populationOld[r0, j] +
ScalingFactorParameter.Value.Value * (populationOld[r1, j] - populationOld[r2, j]);
//check the problem upper and lower bounds
if (mutationPopulation[i, j] > ub) mutationPopulation[i, j] = ub;
if (mutationPopulation[i, j] < lb) mutationPopulation[i, j] = lb;
}
}
//uniform crossover
for (int i = 0; i < PopulationSizeParameter.Value.Value; i++)
{
double rnbr = _random.Next(0, Problem.ProblemSize.Value);
for (int j = 0; j < getMatrixRow(mutationPopulation, i).Length; j++)
{
if (_random.NextDouble() <= CrossoverProbabilityParameter.Value.Value || j == rnbr)
{
trialPopulation[i, j] = mutationPopulation[i, j];
}
else
{
trialPopulation[i, j] = populationOld[i, j];
}
}
}
//One-to-One Survivor Selection
for (int i = 0; i < PopulationSizeParameter.Value.Value; i++)
{
selectionVector = new RealVector(getMatrixRow(populationOld, i));
trialVector = new RealVector(getMatrixRow(trialPopulation, i));
var selectionEval = qualityPopulation[i];
var trialEval = Obj(trialVector);
if (trialEval < selectionEval)
{
for (int j = 0; j < getMatrixRow(populationOld, i).Length; j++)
{
populationOld[i, j] = trialPopulation[i, j];
}
qualityPopulation[i] = trialEval;
}
}
//update the best candidate
for (int i = 0; i < PopulationSizeParameter.Value.Value; i++)
{
selectionVector = new RealVector(getMatrixRow(populationOld, i));
var quality = qualityPopulation[i];
if (quality < bestPopulationValue)
{
bestPopulationVector = (RealVector)selectionVector.Clone();
bestPopulationValue = quality;
}
}
iterations = iterations + 1;
//update the results
ResultsEvaluations = evals;
ResultsIterations = iterations;
ResultsBestSolution = bestPopulationVector;
ResultsBestQuality = bestPopulationValue;
//update the results in view
if (iterations % 10 == 0) ResultsQualitiesBest.Values.Add(bestPopulationValue);
if (bestPopulationValue < Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value)
{
VTRBestQuality = bestPopulationValue;
}
}
}
//evaluate the vector
public double Obj(RealVector x)
{
evals = evals + 1;
if (Problem.Maximization.Value)
return -Problem.Evaluator.Evaluate(x);
return Problem.Evaluator.Evaluate(x);
}
// Get ith row from the matrix
public double[] getMatrixRow(double[,] Mat, int i)
{
double[] tmp = new double[Mat.GetUpperBound(1) + 1];
for (int j = 0; j <= Mat.GetUpperBound(1); j++)
{
tmp[j] = Mat[i, j];
}
return tmp;
}
}
}