using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.TestFunctions; using HeuristicLab.Random; using System; using System.Collections.Generic; using System.Threading; namespace HeuristicLab.Algorithms.DifferentialEvolution { [Item("Differential Evolution (DE)", "A differential evolution algorithm.")] [StorableClass] [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 400)] public class DifferentialEvolution : BasicAlgorithm { public Func, double> Evaluation; public override Type ProblemType { get { return typeof(SingleObjectiveTestFunctionProblem); } } public new SingleObjectiveTestFunctionProblem Problem { get { return (SingleObjectiveTestFunctionProblem)base.Problem; } set { base.Problem = value; } } private readonly IRandom _random = new MersenneTwister(); private int evals; #region ParameterNames private const string MaximumEvaluationsParameterName = "Maximum Evaluations"; private const string SeedParameterName = "Seed"; private const string SetSeedRandomlyParameterName = "SetSeedRandomly"; private const string CrossoverProbabilityParameterName = "CrossoverProbability"; private const string PopulationSizeParameterName = "PopulationSize"; private const string ScalingFactorParameterName = "ScalingFactor"; private const string ValueToReachParameterName = "ValueToReach"; #endregion #region ParameterProperties public IFixedValueParameter MaximumEvaluationsParameter { get { return (IFixedValueParameter)Parameters[MaximumEvaluationsParameterName]; } } public IFixedValueParameter SeedParameter { get { return (IFixedValueParameter)Parameters[SeedParameterName]; } } public FixedValueParameter SetSeedRandomlyParameter { get { return (FixedValueParameter)Parameters[SetSeedRandomlyParameterName]; } } private ValueParameter PopulationSizeParameter { get { return (ValueParameter)Parameters[PopulationSizeParameterName]; } } public ValueParameter CrossoverProbabilityParameter { get { return (ValueParameter)Parameters[CrossoverProbabilityParameterName]; } } public ValueParameter ScalingFactorParameter { get { return (ValueParameter)Parameters[ScalingFactorParameterName]; } } public ValueParameter ValueToReachParameter { get { return (ValueParameter)Parameters[ValueToReachParameterName]; } } #endregion #region Properties public int MaximumEvaluations { get { return MaximumEvaluationsParameter.Value.Value; } set { MaximumEvaluationsParameter.Value.Value = value; } } public Double CrossoverProbability { get { return CrossoverProbabilityParameter.Value.Value; } set { CrossoverProbabilityParameter.Value.Value = value; } } public Double ScalingFactor { get { return ScalingFactorParameter.Value.Value; } set { ScalingFactorParameter.Value.Value = value; } } public int Seed { get { return SeedParameter.Value.Value; } set { SeedParameter.Value.Value = value; } } public bool SetSeedRandomly { get { return SetSeedRandomlyParameter.Value.Value; } set { SetSeedRandomlyParameter.Value.Value = value; } } public IntValue PopulationSize { get { return PopulationSizeParameter.Value; } set { PopulationSizeParameter.Value = value; } } public Double ValueToReach { get { return ValueToReachParameter.Value.Value; } set { ValueToReachParameter.Value.Value = value; } } #endregion #region ResultsProperties private double ResultsBestQuality { get { return ((DoubleValue)Results["Best Quality"].Value).Value; } set { ((DoubleValue)Results["Best Quality"].Value).Value = value; } } private double VTRBestQuality { get { return ((DoubleValue)Results["VTR"].Value).Value; } set { ((DoubleValue)Results["VTR"].Value).Value = value; } } private RealVector ResultsBestSolution { get { return (RealVector)Results["Best Solution"].Value; } set { Results["Best Solution"].Value = value; } } private int ResultsEvaluations { get { return ((IntValue)Results["Evaluations"].Value).Value; } set { ((IntValue)Results["Evaluations"].Value).Value = value; } } private int ResultsIterations { get { return ((IntValue)Results["Iterations"].Value).Value; } set { ((IntValue)Results["Iterations"].Value).Value = value; } } private DataTable ResultsQualities { get { return ((DataTable)Results["Qualities"].Value); } } private DataRow ResultsQualitiesBest { get { return ResultsQualities.Rows["Best Quality"]; } } #endregion [StorableConstructor] protected DifferentialEvolution(bool deserializing) : base(deserializing) { } protected DifferentialEvolution(DifferentialEvolution original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new DifferentialEvolution(this, cloner); } public DifferentialEvolution() { Parameters.Add(new FixedValueParameter(MaximumEvaluationsParameterName, "", new IntValue(Int32.MaxValue))); Parameters.Add(new FixedValueParameter(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true))); Parameters.Add(new ValueParameter(PopulationSizeParameterName, "The size of the population of solutions.", new IntValue(75))); Parameters.Add(new ValueParameter(CrossoverProbabilityParameterName, "The value for crossover rate", new DoubleValue(0.88))); Parameters.Add(new ValueParameter(ScalingFactorParameterName, "The value for scaling factor", new DoubleValue(0.47))); Parameters.Add(new ValueParameter(ValueToReachParameterName, "Value to reach (VTR) parameter", new DoubleValue(0.000001))); } protected override void Run(CancellationToken cancellationToken) { // Set up the results display Results.Add(new Result("Iterations", new IntValue(0))); Results.Add(new Result("Evaluations", new IntValue(0))); Results.Add(new Result("Best Solution", new RealVector())); Results.Add(new Result("Best Quality", new DoubleValue(double.NaN))); Results.Add(new Result("VTR", new DoubleValue(double.NaN))); var table = new DataTable("Qualities"); table.Rows.Add(new DataRow("Best Quality")); Results.Add(new Result("Qualities", table)); //problem variables var dim = Problem.ProblemSize.Value; var lb = Problem.Bounds[0, 0]; var ub = Problem.Bounds[0, 1]; var range = ub - lb; this.evals = 0; double[,] populationOld = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value]; double[,] mutationPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value]; double[,] trialPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value]; double[] bestPopulation = new double[Problem.ProblemSize.Value]; double[] bestPopulationIteration = new double[Problem.ProblemSize.Value]; //create initial population //population is a matrix of size PopulationSize*ProblemSize for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) { for (int j = 0; j < Problem.ProblemSize.Value; j++) { populationOld[i, j] = _random.NextDouble() * range + lb; } } //evaluate the best member after the intialiazation //the idea is to select first member and after that to check the others members from the population int best_index = 0; double[] populationRow = new double[Problem.ProblemSize.Value]; double[] qualityPopulation = new double[PopulationSizeParameter.Value.Value]; bestPopulation = getMatrixRow(populationOld, best_index); RealVector bestPopulationVector = new RealVector(bestPopulation); double bestPopulationValue = Obj(bestPopulationVector); qualityPopulation[best_index] = bestPopulationValue; RealVector selectionVector; RealVector trialVector; double qtrial; for (var i = 1; i < PopulationSizeParameter.Value.Value; i++) { populationRow = getMatrixRow(populationOld, i); trialVector = new RealVector(populationRow); qtrial = Obj(trialVector); qualityPopulation[i] = qtrial; if (qtrial > bestPopulationValue) { bestPopulationVector = new RealVector(populationRow); bestPopulationValue = qtrial; best_index = i; } } int iterations = 1; // Loop until iteration limit reached or canceled. // todo replace with a function while (ResultsIterations < MaximumEvaluations && !cancellationToken.IsCancellationRequested && bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value) { //mutation DE/rand/1/bin; classic DE for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) { int r0, r1, r2; //assure the selected vectors r0, r1 and r2 are different do { r0 = _random.Next(0, PopulationSizeParameter.Value.Value); } while (r0 == i); do { r1 = _random.Next(0, PopulationSizeParameter.Value.Value); } while (r1 == i || r1 == r0); do { r2 = _random.Next(0, PopulationSizeParameter.Value.Value); } while (r2 == i || r2 == r0 || r2 == r1); for (int j = 0; j < getMatrixRow(mutationPopulation, i).Length; j++) { mutationPopulation[i, j] = populationOld[r0, j] + ScalingFactorParameter.Value.Value * (populationOld[r1, j] - populationOld[r2, j]); //check the problem upper and lower bounds if (mutationPopulation[i, j] > ub) mutationPopulation[i, j] = ub; if (mutationPopulation[i, j] < lb) mutationPopulation[i, j] = lb; } } //uniform crossover for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) { double rnbr = _random.Next(0, Problem.ProblemSize.Value); for (int j = 0; j < getMatrixRow(mutationPopulation, i).Length; j++) { if (_random.NextDouble() <= CrossoverProbabilityParameter.Value.Value || j == rnbr) { trialPopulation[i, j] = mutationPopulation[i, j]; } else { trialPopulation[i, j] = populationOld[i, j]; } } } //One-to-One Survivor Selection for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) { selectionVector = new RealVector(getMatrixRow(populationOld, i)); trialVector = new RealVector(getMatrixRow(trialPopulation, i)); var selectionEval = qualityPopulation[i]; var trialEval = Obj(trialVector); if (trialEval < selectionEval) { for (int j = 0; j < getMatrixRow(populationOld, i).Length; j++) { populationOld[i, j] = trialPopulation[i, j]; } qualityPopulation[i] = trialEval; } } //update the best candidate for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) { selectionVector = new RealVector(getMatrixRow(populationOld, i)); var quality = qualityPopulation[i]; if (quality < bestPopulationValue) { bestPopulationVector = (RealVector)selectionVector.Clone(); bestPopulationValue = quality; } } iterations = iterations + 1; //update the results ResultsEvaluations = evals; ResultsIterations = iterations; ResultsBestSolution = bestPopulationVector; ResultsBestQuality = bestPopulationValue; //update the results in view if (iterations % 10 == 0) ResultsQualitiesBest.Values.Add(bestPopulationValue); if (bestPopulationValue < Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value) { VTRBestQuality = bestPopulationValue; } } } //evaluate the vector public double Obj(RealVector x) { evals = evals + 1; if (Problem.Maximization.Value) return -Problem.Evaluator.Evaluate(x); return Problem.Evaluator.Evaluate(x); } // Get ith row from the matrix public double[] getMatrixRow(double[,] Mat, int i) { double[] tmp = new double[Mat.GetUpperBound(1) + 1]; for (int j = 0; j <= Mat.GetUpperBound(1); j++) { tmp[j] = Mat[i, j]; } return tmp; } } }