#region License Information
/* HeuristicLab
* Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class FriedmanTwo : ArtificialRegressionDataDescriptor {
public override string Name { get { return "Friedman - II"; } }
public override string Description {
get {
return "Paper: Multivariate Adaptive Regression Splines" + Environment.NewLine
+ "Authors: Jerome H. Friedman";
}
}
protected override string TargetVariable { get { return "Y"; } }
protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 5000; } }
protected override int TestPartitionStart { get { return 5000; } }
protected override int TestPartitionEnd { get { return 10000; } }
protected static FastRandom rand = new FastRandom();
protected override List> GenerateValues() {
List> data = new List>();
for (int i = 0; i < AllowedInputVariables.Count(); i++) {
data.Add(ValueGenerator.GenerateUniformDistributedValues(10000, 0, 1).ToList());
}
double x1, x2, x3, x4, x5;
double f;
List results = new List();
for (int i = 0; i < data[0].Count; i++) {
x1 = data[0][i];
x2 = data[1][i];
x3 = data[2][i];
x4 = data[3][i];
x5 = data[4][i];
f = 10 * Math.Sin(Math.PI * x1 * x2) + 20 * Math.Pow(x3 - 0.5, 2) + 10 * x4 + 5 * x5;
results.Add(f + NormalDistributedRandom.NextDouble(rand, 0, 1));
}
data.Add(results);
return data;
}
}
}