#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[Item("ProbabilisticFunctionalCrossover", "An operator which performs subtree swapping based on the behavioral similarity between subtrees.")]
public sealed class SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover : SymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData {
[StorableConstructor]
private SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover(bool deserializing) : base(deserializing) { }
private SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover(SymbolicDataAnalysisExpressionCrossover original, Cloner cloner)
: base(original, cloner) { }
public SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover()
: base() {
Name = "ProbabilisticFunctionalCrossover";
}
public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover(this, cloner); }
protected override ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
ISymbolicDataAnalysisExpressionTreeInterpreter interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
List rows = GenerateRowsToEvaluate().ToList();
T problemData = ProblemDataParameter.ActualValue;
return Cross(random, parent0, parent1, interpreter, problemData,
rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
}
public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
return Cross(random, parent0, parent1);
}
///
/// Takes two parent individuals P0 and P1.
/// Randomly choose a node i from the first parent, then for each matching node j from the second parent, calculate the behavioral distance based on the range:
/// d(i,j) = 0.5 * ( abs(max(i) - max(j)) + abs(min(i) - min(j)) ).
/// Next, assign probabilities for the selection of the second cross point based on the inversed and normalized behavioral distance and
/// choose the second crosspoint via a random weighted selection procedure.
///
public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, T problemData, IList rows, int maxDepth, int maxLength) {
var crossoverPoints0 = new List();
parent0.Root.ForEachNodePostfix((n) => {
if (n.Subtrees.Any() && n != parent0.Root)
foreach (var child in n.Subtrees)
crossoverPoints0.Add(new CutPoint(n, child));
});
var crossoverPoint0 = crossoverPoints0.SelectRandom(random);
int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();
var allowedBranches = new List();
parent1.Root.ForEachNodePostfix((n) => {
if (n.Subtrees.Any() && n != parent1.Root)
allowedBranches.AddRange(n.Subtrees.Where(s => crossoverPoint0.IsMatchingPointType(s) && s.GetDepth() + level <= maxDepth && s.GetLength() + length <= maxLength));
});
if (allowedBranches.Count == 0)
return parent0;
var dataset = problemData.Dataset;
// create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
var rootSymbol = new ProgramRootSymbol();
var startSymbol = new StartSymbol();
var tree0 = CreateTreeFromNode(random, crossoverPoint0.Child, rootSymbol, startSymbol); // this will change crossoverPoint0.Child.Parent
List estimatedValues0 = interpreter.GetSymbolicExpressionTreeValues(tree0, dataset, rows).ToList();
double min0 = estimatedValues0.Min();
double max0 = estimatedValues0.Max();
crossoverPoint0.Child.Parent = crossoverPoint0.Parent; // restore correct parent
var weights = new List();
foreach (var node in allowedBranches) {
var parent = node.Parent;
var tree1 = CreateTreeFromNode(random, node, rootSymbol, startSymbol);
List estimatedValues1 = interpreter.GetSymbolicExpressionTreeValues(tree1, dataset, rows).ToList();
double min1 = estimatedValues1.Min();
double max1 = estimatedValues1.Max();
double behavioralDistance = (Math.Abs(min0 - min1) + Math.Abs(max0 - max1)) / 2; // this can be NaN of Infinity because some trees are crazy like exp(exp(exp(...))), we correct that below
weights.Add(behavioralDistance);
node.Parent = parent; // restore correct node parent
}
// remove branches with an infinite or NaN behavioral distance
int count = weights.Count, idx = 0;
while (idx < count) {
if (Double.IsNaN(weights[idx]) || Double.IsInfinity(weights[idx])) {
weights.RemoveAt(idx);
allowedBranches.RemoveAt(idx);
--count;
} else {
++idx;
}
}
// check if there are any allowed branches left
if (allowedBranches.Count == 0)
return parent0;
ISymbolicExpressionTreeNode selectedBranch;
double sum = weights.Sum();
if (sum == 0.0)
selectedBranch = allowedBranches[0]; // just return the first, since we don't care (all weights are zero)
else {
// transform similarity distances into probabilities by normalizing and inverting the values
for (int i = 0; i != weights.Count; ++i)
weights[i] = (1 - weights[i] / sum);
//selectedBranch = allowedBranches.SelectRandom(weights, random);
selectedBranch = SelectRandomBranch(random, allowedBranches, weights);
}
swap(crossoverPoint0, selectedBranch);
return parent0;
}
private static void swap(CutPoint crossoverPoint, ISymbolicExpressionTreeNode selectedBranch) {
if (crossoverPoint.Child != null) {
// manipulate the tree of parent0 in place
// replace the branch in tree0 with the selected branch from tree1
crossoverPoint.Parent.RemoveSubtree(crossoverPoint.ChildIndex);
if (selectedBranch != null) {
crossoverPoint.Parent.InsertSubtree(crossoverPoint.ChildIndex, selectedBranch);
}
} else {
// child is null (additional child should be added under the parent)
if (selectedBranch != null) {
crossoverPoint.Parent.AddSubtree(selectedBranch);
}
}
}
private static ISymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IList nodes, IList weights) {
double r = weights.Sum() * random.NextDouble();
for (int i = 0; i != nodes.Count; ++i) {
if (r < weights[i])
return nodes[i];
r -= weights[i];
}
return nodes.Last();
}
}
}