#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.RealVectorEncoding { [Item("SPSO 2007 Particle Updater", "Updates the particle's position according to the formulae described in SPSO 2007.")] [StorableClass] public sealed class SPSO2007ParticleUpdater : SPSOParticleUpdater { #region Construction & Cloning [StorableConstructor] private SPSO2007ParticleUpdater(bool deserializing) : base(deserializing) { } private SPSO2007ParticleUpdater(SPSO2007ParticleUpdater original, Cloner cloner) : base(original, cloner) { } public SPSO2007ParticleUpdater() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new SPSO2007ParticleUpdater(this, cloner); } #endregion public static void UpdateVelocity(IRandom random, RealVector velocity, RealVector position, RealVector personalBest, RealVector neighborBest, double inertia = 0.721, double personalBestAttraction = 1.193, double neighborBestAttraction = 1.193, double maxVelocity = double.MaxValue) { for (int i = 0; i < velocity.Length; i++) { double r_p = random.NextDouble(); double r_g = random.NextDouble(); velocity[i] = velocity[i] * inertia + (personalBest[i] - position[i]) * personalBestAttraction * r_p + (neighborBest[i] - position[i]) * neighborBestAttraction * r_g; } var speed = Math.Sqrt(velocity.DotProduct(velocity)); if (speed > maxVelocity) { for (var i = 0; i < velocity.Length; i++) { velocity[i] *= maxVelocity / speed; } } } public static void UpdatePosition(DoubleMatrix bounds, RealVector velocity, RealVector position) { for (int i = 0; i < velocity.Length; i++) { position[i] += velocity[i]; } for (int i = 0; i < position.Length; i++) { double min = bounds[i % bounds.Rows, 0]; double max = bounds[i % bounds.Rows, 1]; if (position[i] < min) { position[i] = min; velocity[i] = 0; // SPSO 2007 } if (position[i] > max) { position[i] = max; velocity[i] = 0; // SPSO 2007 } } } public override IOperation Apply() { var random = RandomParameter.ActualValue; var velocity = VelocityParameter.ActualValue; var maxVelocity = CurrentMaxVelocityParameter.ActualValue.Value; var position = RealVectorParameter.ActualValue; var bounds = BoundsParameter.ActualValue; var inertia = CurrentInertiaParameter.ActualValue.Value; var personalBest = PersonalBestParameter.ActualValue; var personalBestAttraction = PersonalBestAttractionParameter.ActualValue.Value; var neighborBest = NeighborBestParameter.ActualValue; var neighborBestAttraction = NeighborBestAttractionParameter.ActualValue.Value; UpdateVelocity(random, velocity, position, personalBest, neighborBest, inertia, personalBestAttraction, neighborBestAttraction, maxVelocity); UpdatePosition(bounds, velocity, position); return base.Apply(); } } }