#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis { [Item("Pearson R² Evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic time-series prognosis solution.")] [StorableClass] public class SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator : SymbolicTimeSeriesPrognosisSingleObjectiveEvaluator { [StorableConstructor] protected SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { } protected SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator(SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator(this, cloner); } public SymbolicTimeSeriesPrognosisSingleObjectivePearsonRSquaredEvaluator() : base() { } public override bool Maximization { get { return true; } } public override IOperation Apply() { var solution = SymbolicExpressionTreeParameter.ActualValue; IEnumerable rows = GenerateRowsToEvaluate(); double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, HorizonParameter.ActualValue.Value); QualityParameter.ActualValue = new DoubleValue(quality); return base.Apply(); } public static double Calculate(ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, ITimeSeriesPrognosisProblemData problemData, IEnumerable rows, int horizon) { var allPredictedContinuations = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, problemData.TargetVariables.ToArray(), rows, horizon).ToArray(); var meanCalculator = new OnlineMeanAndVarianceCalculator(); int i = 0; foreach (var targetVariable in problemData.TargetVariables) { var actualContinuations = from r in rows select problemData.Dataset.GetDoubleValues(targetVariable, Enumerable.Range(r, horizon)); var startValues = problemData.Dataset.GetDoubleValues(targetVariable, rows.Select(r => r - 1)); OnlineCalculatorError errorState; meanCalculator.Add(OnlineTheilsUStatisticCalculator.Calculate( startValues, allPredictedContinuations.Select(v => v.ElementAt(i)), actualContinuations, out errorState)); if (errorState != OnlineCalculatorError.None) return double.NaN; i++; } return meanCalculator.Mean; } public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, ITimeSeriesPrognosisProblemData problemData, IEnumerable rows) { SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context; EstimationLimitsParameter.ExecutionContext = context; HorizonParameter.ExecutionContext = context; double r2 = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, HorizonParameter.ActualValue.Value); HorizonParameter.ExecutionContext = null; SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null; EstimationLimitsParameter.ExecutionContext = null; return r2; } } }