#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
* and the BEACON Center for the Study of Evolution in Action.
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Diagnostics.Contracts;
using System.Linq;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.DataAnalysis {
public static class GradientBoostedTreesAlgorithmStatic {
#region static API
public interface IGbmState {
IRegressionModel GetModel();
double GetTrainLoss();
double GetTestLoss();
IEnumerable> GetVariableRelevance();
}
// created through factory method
// GbmState details are private API users can only use methods from IGbmState
private class GbmState : IGbmState {
internal IRegressionProblemData problemData { get; private set; }
internal ILossFunction lossFunction { get; private set; }
internal int maxSize { get; private set; }
internal double nu { get; private set; }
internal double r { get; private set; }
internal double m { get; private set; }
internal int[] trainingRows { get; private set; }
internal int[] testRows { get; private set; }
internal RegressionTreeBuilder treeBuilder { get; private set; }
private readonly uint randSeed;
private MersenneTwister random { get; set; }
// array members (allocate only once)
internal double[] pred;
internal double[] predTest;
internal double[] y;
internal int[] activeIdx;
internal double[] pseudoRes;
private readonly IList models;
private readonly IList weights;
public GbmState(IRegressionProblemData problemData, ILossFunction lossFunction, uint randSeed, int maxSize, double r, double m, double nu) {
// default settings for MaxSize, Nu and R
this.maxSize = maxSize;
this.nu = nu;
this.r = r;
this.m = m;
this.randSeed = randSeed;
random = new MersenneTwister(randSeed);
this.problemData = problemData;
this.trainingRows = problemData.TrainingIndices.ToArray();
this.testRows = problemData.TestIndices.ToArray();
this.lossFunction = lossFunction;
int nRows = trainingRows.Length;
y = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, trainingRows).ToArray();
treeBuilder = new RegressionTreeBuilder(problemData, random);
activeIdx = Enumerable.Range(0, nRows).ToArray();
var zeros = Enumerable.Repeat(0.0, nRows).ToArray();
double f0 = lossFunction.LineSearch(y, zeros, activeIdx, 0, nRows - 1); // initial constant value (mean for squared errors)
pred = Enumerable.Repeat(f0, nRows).ToArray();
predTest = Enumerable.Repeat(f0, testRows.Length).ToArray();
pseudoRes = new double[nRows];
models = new List();
weights = new List();
// add constant model
models.Add(new ConstantModel(f0, problemData.TargetVariable));
weights.Add(1.0);
}
public IRegressionModel GetModel() {
#pragma warning disable 618
var model = new GradientBoostedTreesModel(models, weights);
#pragma warning restore 618
// we don't know the number of iterations here but the number of weights is equal
// to the number of iterations + 1 (for the constant model)
// wrap the actual model in a surrogate that enables persistence and lazy recalculation of the model if necessary
return new GradientBoostedTreesModelSurrogate(problemData, randSeed, lossFunction, weights.Count - 1, maxSize, r, m, nu, model);
}
public IEnumerable> GetVariableRelevance() {
return treeBuilder.GetVariableRelevance();
}
public double GetTrainLoss() {
int nRows = y.Length;
return lossFunction.GetLoss(y, pred) / nRows;
}
public double GetTestLoss() {
var yTest = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, testRows);
var nRows = testRows.Length;
return lossFunction.GetLoss(yTest, predTest) / nRows;
}
internal void AddModel(IRegressionModel m, double weight) {
models.Add(m);
weights.Add(weight);
}
}
// simple interface
public static GradientBoostedTreesSolution TrainGbm(IRegressionProblemData problemData, ILossFunction lossFunction, int maxSize, double nu, double r, double m, int maxIterations, uint randSeed = 31415) {
Contract.Assert(r > 0);
Contract.Assert(r <= 1.0);
Contract.Assert(nu > 0);
Contract.Assert(nu <= 1.0);
var state = (GbmState)CreateGbmState(problemData, lossFunction, randSeed, maxSize, r, m, nu);
for (int iter = 0; iter < maxIterations; iter++) {
MakeStep(state);
}
var model = state.GetModel();
return new GradientBoostedTreesSolution(model, (IRegressionProblemData)problemData.Clone());
}
// for custom stepping & termination
public static IGbmState CreateGbmState(IRegressionProblemData problemData, ILossFunction lossFunction, uint randSeed, int maxSize = 3, double r = 0.66, double m = 0.5, double nu = 0.01) {
return new GbmState(problemData, lossFunction, randSeed, maxSize, r, m, nu);
}
// use default settings for maxSize, nu, r from state
public static void MakeStep(IGbmState state) {
var gbmState = state as GbmState;
if (gbmState == null) throw new ArgumentException("state");
MakeStep(gbmState, gbmState.maxSize, gbmState.nu, gbmState.r, gbmState.m);
}
// allow dynamic adaptation of maxSize, nu and r (even though this is not used)
public static void MakeStep(IGbmState state, int maxSize, double nu, double r, double m) {
var gbmState = state as GbmState;
if (gbmState == null) throw new ArgumentException("state");
var problemData = gbmState.problemData;
var lossFunction = gbmState.lossFunction;
var yPred = gbmState.pred;
var yPredTest = gbmState.predTest;
var treeBuilder = gbmState.treeBuilder;
var y = gbmState.y;
var activeIdx = gbmState.activeIdx;
var pseudoRes = gbmState.pseudoRes;
var trainingRows = gbmState.trainingRows;
var testRows = gbmState.testRows;
// copy output of gradient function to pre-allocated rim array (pseudo-residual per row and model)
int rimIdx = 0;
foreach (var g in lossFunction.GetLossGradient(y, yPred)) {
pseudoRes[rimIdx++] = g;
}
var tree = treeBuilder.CreateRegressionTreeForGradientBoosting(pseudoRes, yPred, maxSize, activeIdx, lossFunction, r, m);
int i = 0;
foreach (var pred in tree.GetEstimatedValues(problemData.Dataset, trainingRows)) {
yPred[i] = yPred[i] + nu * pred;
i++;
}
// update predictions for validation set
i = 0;
foreach (var pred in tree.GetEstimatedValues(problemData.Dataset, testRows)) {
yPredTest[i] = yPredTest[i] + nu * pred;
i++;
}
gbmState.AddModel(tree, nu);
}
#endregion
}
}