#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item(Name = "CovarianceProduct", Description = "Product covariance function for Gaussian processes.")] public sealed class CovarianceProduct : Item, ICovarianceFunction { [Storable] private ItemList factors; [Storable] private int numberOfVariables; public ItemList Factors { get { return factors; } } [StorableConstructor] private CovarianceProduct(bool deserializing) : base(deserializing) { } private CovarianceProduct(CovarianceProduct original, Cloner cloner) : base(original, cloner) { this.factors = cloner.Clone(original.factors); this.numberOfVariables = original.numberOfVariables; } public CovarianceProduct() : base() { this.factors = new ItemList(); } public override IDeepCloneable Clone(Cloner cloner) { return new CovarianceProduct(this, cloner); } public int GetNumberOfParameters(int numberOfVariables) { this.numberOfVariables = numberOfVariables; return factors.Select(f => f.GetNumberOfParameters(numberOfVariables)).Sum(); } public void SetParameter(double[] p) { int offset = 0; foreach (var f in factors) { var numberOfParameters = f.GetNumberOfParameters(numberOfVariables); f.SetParameter(p.Skip(offset).Take(numberOfParameters).ToArray()); offset += numberOfParameters; } } public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) { if (factors.Count == 0) throw new ArgumentException("at least one factor is necessary for the product covariance function."); var functions = new List(); foreach (var f in factors) { int numberOfParameters = f.GetNumberOfParameters(numberOfVariables); functions.Add(f.GetParameterizedCovarianceFunction(p.Take(numberOfParameters).ToArray(), columnIndices)); p = p.Skip(numberOfParameters).ToArray(); } var product = new ParameterizedCovarianceFunction(); product.Covariance = (x, i, j) => functions.Select(e => e.Covariance(x, i, j)).Aggregate((a, b) => a * b); product.CrossCovariance = (x, xt, i, j) => functions.Select(e => e.CrossCovariance(x, xt, i, j)).Aggregate((a, b) => a * b); product.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, functions); return product; } public static IList GetGradient(double[,] x, int i, int j, List factorFunctions) { var covariances = factorFunctions.Select(f => f.Covariance(x, i, j)).ToArray(); var gr = new List(); for (int ii = 0; ii < factorFunctions.Count; ii++) { foreach (var g in factorFunctions[ii].CovarianceGradient(x, i, j)) { double res = g; for (int jj = 0; jj < covariances.Length; jj++) if (ii != jj) res *= covariances[jj]; gr.Add(res); } } return gr; } } }