#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { /// /// Represents a threshold calculator that maximizes the weighted accuracy of the classifcation model. /// [StorableClass] [Item("AccuracyMaximizationThresholdCalculator", "Represents a threshold calculator that maximizes the weighted accuracy of the classifcation model.")] public class AccuracyMaximizationThresholdCalculator : ThresholdCalculator { [StorableConstructor] protected AccuracyMaximizationThresholdCalculator(bool deserializing) : base(deserializing) { } protected AccuracyMaximizationThresholdCalculator(AccuracyMaximizationThresholdCalculator original, Cloner cloner) : base(original, cloner) { } public AccuracyMaximizationThresholdCalculator() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new AccuracyMaximizationThresholdCalculator(this, cloner); } public override void Calculate(IClassificationProblemData problemData, IEnumerable estimatedValues, IEnumerable targetClassValues, out double[] classValues, out double[] thresholds) { AccuracyMaximizationThresholdCalculator.CalculateThresholds(problemData, estimatedValues, targetClassValues, out classValues, out thresholds); } public static void CalculateThresholds(IClassificationProblemData problemData, IEnumerable estimatedValues, IEnumerable targetClassValues, out double[] classValues, out double[] thresholds) { const int slices = 100; const double minThresholdInc = 10e-5; // necessary to prevent infinite loop when maxEstimated - minEstimated is effectively zero (constant model) List estimatedValuesList = estimatedValues.ToList(); double maxEstimatedValue = estimatedValuesList.Max(); double minEstimatedValue = estimatedValuesList.Min(); double thresholdIncrement = Math.Max((maxEstimatedValue - minEstimatedValue) / slices, minThresholdInc); var estimatedAndTargetValuePairs = estimatedValuesList.Zip(targetClassValues, (x, y) => new { EstimatedValue = x, TargetClassValue = y }) .OrderBy(x => x.EstimatedValue).ToList(); classValues = estimatedAndTargetValuePairs.GroupBy(x => x.TargetClassValue) .Select(x => new { Median = x.Select(y => y.EstimatedValue).Median(), Class = x.Key }) .OrderBy(x => x.Median).Select(x => x.Class).ToArray(); int nClasses = classValues.Length; thresholds = new double[nClasses]; thresholds[0] = double.NegativeInfinity; // incrementally calculate accuracy of all possible thresholds for (int i = 1; i < thresholds.Length; i++) { double lowerThreshold = thresholds[i - 1]; double actualThreshold = Math.Max(lowerThreshold, minEstimatedValue); double lowestBestThreshold = double.NaN; double highestBestThreshold = double.NaN; double bestClassificationScore = double.PositiveInfinity; bool seriesOfEqualClassificationScores = false; while (actualThreshold < maxEstimatedValue) { double classificationScore = 0.0; foreach (var pair in estimatedAndTargetValuePairs) { //all positives if (pair.TargetClassValue.IsAlmost(classValues[i - 1])) { if (pair.EstimatedValue > lowerThreshold && pair.EstimatedValue <= actualThreshold) //true positive classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, pair.TargetClassValue); else //false negative classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i]); } //all negatives else { //false positive if (pair.EstimatedValue > lowerThreshold && pair.EstimatedValue <= actualThreshold) classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i - 1]); else if (pair.EstimatedValue <= lowerThreshold) classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i - 2]); else if (pair.EstimatedValue > actualThreshold) { if (pair.TargetClassValue < classValues[i - 1]) //negative in wrong class, consider upper class classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i]); else //true negative, must be optimized by the other thresholds classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, pair.TargetClassValue); } } } //new best classification score found if (classificationScore < bestClassificationScore) { bestClassificationScore = classificationScore; lowestBestThreshold = actualThreshold; highestBestThreshold = actualThreshold; seriesOfEqualClassificationScores = true; } //equal classification scores => if seriesOfEqualClassifcationScores == true update highest threshold else if (Math.Abs(classificationScore - bestClassificationScore) < double.Epsilon && seriesOfEqualClassificationScores) highestBestThreshold = actualThreshold; //worse classificatoin score found reset seriesOfEqualClassifcationScores else seriesOfEqualClassificationScores = false; actualThreshold += thresholdIncrement; } //scale lowest thresholds and highest found optimal threshold according to the misclassification matrix double falseNegativePenalty = problemData.GetClassificationPenalty(classValues[i], classValues[i - 1]); double falsePositivePenalty = problemData.GetClassificationPenalty(classValues[i - 1], classValues[i]); thresholds[i] = (lowestBestThreshold * falsePositivePenalty + highestBestThreshold * falseNegativePenalty) / (falseNegativePenalty + falsePositivePenalty); } } } }